• Title/Summary/Keyword: DPSS laser crystallization

Search Result 8, Processing Time 0.028 seconds

Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application (Ge-Se의 스위칭 특성 향상을 위한 Sb-doping에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.69-69
    • /
    • 2009
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sh-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sh-doped Ge-Se-Te thin films.

  • PDF

Ag 도핑된 Sbx(Ge-Se-Te)100-x 박막의 개선된 상변화 특성

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.181-182
    • /
    • 2011
  • Phase-change materials can be cycled by exposure to laser beam, and as a function of the pulse intensity and duration, the laser beam triggers the switching from crystalline to amorphous phase and back. In other to progress better crystallization transition and amorphization long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10, 20 and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Optical Properties of $Ge_1Se_1Te_2$ Amorphous Chalcogenide Materials ($Ge_1Se_1Te_2$ 비정질 칼코게나이드 물질의 광학적 특성)

  • Choi, Hyuk;Kim, Hyun-Koo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.83-84
    • /
    • 2006
  • For phase transition method, good recording sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, A retention time is very important part for phase transition. In our presentation wall, we chose Ge-Se-Te material to use a Se material which has good optical sensitivity than Sb. A Ge-Se-Te sample was fabricated and Irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light.

  • PDF

Advanced P-Channel Poly-Si TFTs for SOG

  • Park, Seong-Jin;Kang, Sang-Hoon;Ku, Yu-Mi;Choi, Jong-Hyun;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1019-1022
    • /
    • 2004
  • High performance p-ch poly-Si TFTs with excellent stability were developed. By using a frequency doubled DPSS CW laser, the a-Si on glass could be crystallized into one dimensional single crystalline silicon named as a sequential lateral crystallization (SLC) region. We fabricated p-ch TFTs on SLC region and the typical characteristic values of the TFTs were $u_{fe}$ = 180 $cm^2$/Vs, $V_{th}$ = -3 V, S.S. = 0.5 V/dec, and $I_{off}$ = 1 pA/um@ $V_d$ = -10V. It is found that the TFTs are very stable after bias stresses such as negative and positive gate biases, hot carrier bias and high current bias. These results indicate that the poly-Si in SLC region is suitable for system on glass (SOG) application.

  • PDF

Optical properties of Ag/$Ge_1Se_1Te_2$ material with secondary Ag layer adoption (두 번째 Ag 층을 적용한 Ag/$Ge_1Se_1Te_2$ 물질의 광학적 특성 연구)

  • Kim, Hyun-Koo;Han, Song-Lee;Kim, Jae-Hoon;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.191-192
    • /
    • 2008
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Ge-Se-Te and Ag/$Ge_1Se_1Te_2$ samples are fabricated and irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light. Because of Ag ions, the Ag layer inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

  • PDF