• 제목/요약/키워드: DPF (Diesel Particulate Filter)

검색결과 120건 처리시간 0.023초

전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구 (A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle)

  • 김선진;박진원
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.689-695
    • /
    • 2018
  • 본 연구는 배기가스 기준을 만족하기 위해 차량에 장착된 배기가스 후처리 장치(DPF)의 재생제어 방안에 대한 것이다. DPF는 배기가스에 포함된 입자상 물질(PM)을 포집하기 위한 필터로 DPF에 포집된 PM은 일정 조건에 이르렀을 때 고온의 배기가스로 연소시킨다. 이러한 과정을 재생(Regeneration)이라 하는데 DPF의 정상적인 성능을 위한 필수 과정이다. 재생이 잘 되지 않을 경우, 차량의 성능저하와 심한 경우 차량의 화재로도 이어질 수 있다. DPF의 재생은 제어로직에 의해 수행되는데 재생제어 로직이 차량의 운용특성을 제대로 반영하지 못한 경우 DPF 재생이 이루어지지 않을 수 있다. 그렇기 때문에 전술차량의 운용특성을 파악하여 DPF가 정상적으로 재생될 수 있도록 하는 것이 매우 중요하다. 본 연구에서는 전술차량의 운용 특성과 DPF의 특성을 분석하여 이에 맞는 DPF의 재생 제어 로직을 추가하고자 한다. 더불어 추가된 재생 제어 로직에 따른 운용 시 발생될 수 있는 추가적인 문제점까지 동시에 개선하고자 한다.

촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구 (An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter)

  • 조용석;노영창;박영준;김득상
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석 (A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter)

  • 정승채;윤웅섭
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

단기통 디젤엔진에서 LNT/DPF + SCR/DPF 하이브리드 시스템의 NOx 및 PM 동시저감 특성 (Characteristics of Simultaneous Removal of NOx and PM over a Hybrid System of LNT/DPF + SCR/DPF in a Single Cylinder Diesel Engine)

  • 강우석;박수한;최병철
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.152-160
    • /
    • 2016
  • The market demand for diesel engine tends to increase in general passenger cars as well as commercial vehicles because of its advantages. However, to meet the vehicle emissions regulation which will be more stringent in the future, it is necessary to plurally apply all after-treatment technologies such as diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), lean NOx trap (LNT) and selective catalytic reduction (SCR), and so on. Accordingly, the exhaust after-treatment system for diesel vehicle requires the technology of minimizing the numbers of catalysts by integrating every individual catalysts. The purposes of this study is to develop hybrid exhaust after-treatment device system which simultaneously uses LNT/DPF and SCR/DPF catalyst concurrently reducing NOx and particulate matter (PM). As the results, the hybrid system with $NH_3$ generated at LNT/DPF working as a reducing agent of SCR/DPF catalyst, improving NOx conversion rate, was found to be more excellent in de-NOx performance than that in LNT/DPF alone system.

Comparative Studies on Soot Oxidation by Nitrogen Dioxide and Ozone

  • Purushothama, C.;Chen, Xin-Hong;Li, Ming-Wei;Chae, Jae-Ou;Sim, Ju-Hyen
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.117-121
    • /
    • 2006
  • Non-thermal plasma technology has many applications in various areas. One of the applications is regenerating diesel particulate filter (DPF). DPF is a widely applied device to control the particulate emission of diesel engines. But it needs periodic removal of clogged soot for the smooth running of engine. Conventional high-temperature removal processes easily leads to the breakage of DPF. Herein, low-temperature plasma formed in a dielectric barrier discharge (DBD) reactor was used to form active oxidants such as ozone and nitrogen dioxide. Experimentally, the effects of discharge power and frequency on the performance of DBD reactor were studied. Two oxidants, $O_3$ and $NO_2$, were synthesized and used for incinerating soot in the used DPF. Performances of the two oxidants on the reduction of soot were compared, and it was found that $NO_2$ is more effective than $O_3$ for getting rid of soot

  • PDF

곡관 연결 조건에 따른 디젤엔진 매연여과장치 입구 유속 분포의 CFD 해석 (A CFD Analysis of Flow Velocity at Inlet of a Diesel Particulate Filter according to the Curved Duct Connection Conditions)

  • 이수룡;고영남;이충훈
    • 한국철도학회논문집
    • /
    • 제12권4호
    • /
    • pp.457-464
    • /
    • 2009
  • 디젤 엔진 매연 필터의 입구부와 배출 가스 배출을 위한 배기관 연결을 직선 또는 곡선으로 형태로 연결하였을 때의 DPF 입구 유속 분포를 $STAR-CD^{(R)}$ 전산해석 프로그램을 사용하여 시뮬레이션하였다. 곡관의 형상을 나타내는 3 종류의 수치해석 용 격자 모델을 사용하여 DPF 입구에서의 유속 분포를 시뮬레이션 하였다. 피토관을 2차원 이송장치에 탑재하고 위치를 이동시키며 측정한 유속 분포와 동일한 조건에서 시뮬레이션한 결과와 비교하였다. DPF 입구와 $90^{\circ}$의 곡관이 연결된 조건에서 CFD 해석을 수행한 결과 입구 단면에서의 유속 분포가 말발굽 형태를 나타내었으며 최대 유속값이 DPF 중심축에서 약간 벗어난 위치에서 나타나고 있다. 이러한 CFD 해석결과는 실험 결과와 비교적 잘 일치하였다.

ULSD, CR-DPF와 EGR을 적용한 디젤기관의 배출가스에 관한 연구 (A Study on Exhaust Gas of Diesel Engine with a ULSD, CR-DPF and EGR)

  • 문병철;오용석
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.85-90
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13modes. Through durability test on diesel particulate filter, regeneration characteristics and control technology on PM were investigated in overall.

HC 분사에 의한 디젤 분진 저감의 제어특성 연구 (A Study on the Control Characteristics for Reduction of Particulate Material by HC Injection)

  • 김병우;허진
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.968-975
    • /
    • 2009
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter using the HC injection. This research emphasized on the development of Continuously Regenerating DOC/DPF and HC technology which was the best particulate matters removing technology of current existing technology. This experimental study has been conducted with equipped a Continuously Regenerating DOC/DPF and HC injection on displacement 2.0, 3.3 $\ell$ diesel engine and compared in terms of particulate material and emission. In this study, we could constructed 3 kinds of database according to quantity of temperature to decide the HC injection quantity and develop DOC/DPF ECU algorithm.

단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석 (Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters)

  • 정승채;박종선;윤웅섭
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구 (A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR)

  • 문병철;오용석;오상기;강금원;안균재
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.