• 제목/요약/키워드: DOSE

검색결과 20,429건 처리시간 0.042초

원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가 (Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident)

  • 고아라;김민준;조남찬;설증군;김광표
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

CT 촬영 조건에 따른 PET 영상의 변화 (Change of PET Image According to CT Exposure Conditions)

  • 박재윤;김정훈;이용기
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.473-479
    • /
    • 2019
  • 다양한 촬영 조건의 CT 감쇠 지도가 PET 영상에 영향을 미치는지 알아보기 위하여 다양한 kVp와 mA조건에서 Uniformity phantom 영상의 신호 강도(SI; Signal Intensity)와 표준 섭취율 계수(SUV; Standardized Uptake Value)를 측정하고, CTDI (Computed Tomography Dose Index)를 통해 각 조건에 따른 피폭선량을 측정하였다. 또한 동일한 조건에서 Resolution phantom의 반치폭(FWHM; Full Width at Half Maximum)을 측정하여 CT의 kVp와 mA에 따른 PET 영상의 화질 변화에 대하여 정량적으로 알아보고자 하였다. 연구 결과, CT의 촬영 조건은 PET 영상에는 영향을 주지 않는 것으로 나타났으나, CT의 촬영 조건이 감소하게 되면 방사선 피폭이 감소하게 되지만 영상에 영향을 미치게 되므로 향후 진단이 가능한 CT 화질을 유지하면서 방사선 피폭을 최소화할 수 있는 양전자 방출 단층 촬영(PET/CT; Positron Emission Tomography / Computed Tomography)의 촬영 조건에 대한 연구가 지속적으로 되어야 할 것이다.

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • 제24권7호
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

  • Lee, Jaewon;Park, Inchun;Kim, Junsik;Lee, Jaejin;Hwang, Junga;Kim, Young-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.33-39
    • /
    • 2014
  • This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a high-altitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of $15.27{\mu}Sv$) of aircrew at the high-altitude are an order of magnitude larger than those (an average of $0.30{\mu}Sv$) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC-800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

반도체 검출기에 의한 전자선 선량분포에 관한 연구 (A Study on Dose Distribution of Electron Beams by Semiconductor Detector)

  • 강위생;하성환;박찬일
    • Journal of Radiation Protection and Research
    • /
    • 제9권1호
    • /
    • pp.19-25
    • /
    • 1984
  • There is not yet an universal method of electron dosimetry. The Authors measured dose distributions of the electron beams from Clinac-18 by means of silicon detector connected to X-Y recorder, and compared them in water phantom with dose distributions measured by film and ion chamber, both inserted in polystyrene phantom. The results are as followings, 1. Dose in build-up region increased with the field size for all energy, and depth dose profiles of $6{\sim}12MeV$ beam under the depth of maximum dose were independent of field size, but those of 15 and 18 MeV beam were dependent on the field size. 2. The widths of penumbra by semiconductor detector were narrower than those by film for same energy beam. 3. Depth dose profiles by three different dosimeter did not coincide each other. In the build-up region, dose by semiconductor detector was lower than that by any other dosimeter.

  • PDF

RALS시행시 선원의 거리 이동및 직장선량에 관한 계산치와 측정치의 비교연구 (Dose Distribution of Rectum in the treatment of Uterine Cervical Cancer using Remote Afterloading System)

  • 김성규;신세원;김명세
    • 한국의학물리학회지:의학물리
    • /
    • 제5권1호
    • /
    • pp.67-74
    • /
    • 1994
  • 선량분포특성은 거리의 제곱에 반비례하기 때문에 근접조사에서 선원의 조그마한 오차는 선량계산에서 큰 차이를 초래할 수 있어서 선원의 정확한 거리 이동과 그에 따른 critical organ에 조사되는 선량의 정확도는 자궁경부암 환자의 치료성적에 결정적인 역할을 할 수가 있다. 특히 High Dose Rate의 RALS(Remote After Loading System)에서 선원의 정확한 calibration은 자궁경부암 환자의 치료에서 선량분포에 지대한 영향을 미치며 나아가 이 선량분포는 치료후 나타나는 재발 및 합병증이나 휴유증의 발생에도 큰 영향을 미치게 된다. 본 연구에서는 실제 RALS시 선원의 거리 이동을 측정하여 치료계획용 computer에서 계산된 선원간의 거리 이동과 비교 검토하였으며 Rectum 위치에 chamber를 삽입하여 실제 Rectum에 조사되는 선량과 computer에서 계산된 값들을 비교검토하였다. Tandem Source을 1cm 간격으로 거리를 이동하면서 실험을 되풀이 한 결과 처음 monitor로 1cm을 이동할 때 측정치가 0.8cm 이동한 것으로 나타났으며, 2번째부터 5번째까지의 거리 이동에서는 monitor의 값과 측정치의 값이 정확하게 일치하였다. 또한 12명의 환자를 대상으로 실시한 Rectum dose의 측정치는 computer계산치보다 평균 8%로 낮게 나타났다.

  • PDF

몬테칼로 기법을 이용한 CBCT의 인체 내 장기의 흡수선량 평가 (Assesment of Absorbed Dose of Organs in Human Body by Cone Beam Computed Tomography using Monte Carlo Method)

  • 김종보;임인철;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권3호
    • /
    • pp.215-221
    • /
    • 2018
  • Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.

Single Oral Dose Toxicity Study of Pinelliae Rhizoma Aqueous Extract in ICR Mice

  • Lim, Young-Kwon;Park, Ji-Ha;Seo, Bu-Il;Roh, Seong-Soo;Ku, Sae-Kwang
    • Toxicological Research
    • /
    • 제25권3호
    • /
    • pp.147-157
    • /
    • 2009
  • This study was conducted to obtain acute information of the oral dose toxicity of lyophilized water extract of Pinelliae Rhizoma, a dried tuber of Pinellia ternata (PR) in male and female mice. In order to calculated 50% lethal dose (LD$_{50}$) and approximate lethal dose (ALD), test material was once orally administered to male and female ICR mice at dose levels of 2000, 1000, 500, 250, 125 and 0 (vehicle control) ml/kg (body weight). The mortality and changes in body weight, clinical signs, gross observation, organ weight and histopathology of principle organs were monitored 14 days after treatment with PR extract. We could not find any mortalities, clinical signs, changes in the body and organ weights, gross and histopathological findings except for dose-dependent increases in the hepatic fatty change frequencies detected in PR extract 2000 and 1000mg/kg treated in both male and female mice. The results obtained in this study suggest that LD$_{50}$ and approximate LD in mice after single oral dose of PR extracts were considered over 2000 mg/kg in both and female male mice, but more than 1000mg/kg of PR extracts treatment could induce slight hepatotoxicity the fatty changes in mice.

광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가 (Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry)

  • 김성환
    • 한국방사선학회논문지
    • /
    • 제13권7호
    • /
    • pp.925-932
    • /
    • 2019
  • 플라스틱 섬광체와 상용 50 mm, f1.8 렌즈 및 고감도 CMOS 카메라를 사용하여 방사선치료 시 흡수선량을 측정할 수 있는 광 도시메트리 시스템을 구축하였다. 아울러 촬영된 방사선 분포 영상에 대한 비네팅 보정, 기하학적 왜곡 보정, 스케일 보정을 통하여 화소값으로 선량을 교정하는 절차를 확립하였다. 개발된 광 도시메트리 시스템을 6 MV 의료용 선형가속기에 대하여 선량 특성 평가를 수행한 결과, 심부선량백분율은 이온챔버로 측정한 결과에 비하여 빌드 업 깊이 이상에서는 오차 범위 2% 이내로 일치하였으며, 90% 조사야에 대하여 2.8%의 평탄도가 측정됨에 따라 방사선치료선량 측정 시스템으로서의 충분한 활용가능성을 확인하였다.

체외순환중 용량반응곡선을 이용한 헤파린과 프로타민 투여량의 결정 (Individualization of Heparin and Protamine Dosage using a Dose-response Curve during Extracorporeal Circulation)

  • 원용순;노준량
    • Journal of Chest Surgery
    • /
    • 제24권3호
    • /
    • pp.253-260
    • /
    • 1991
  • The adequacy of anticoagulation with heparin during cardiopulmonary bypass, and precise neutralization with protamine at the conclusion of cardiopulmonary bypass, were important. In sixty children undergoing cardiopulmonary bypass, ACT and heparin dose-response curve were studied. Total dose of heparin before bypass were 2.80$\pm$0.74 mg/kg and the amount of protamine administered after bypass were 3.0$\pm$1.23 mg/kg. So protamine: heparin ratio was 1.07: l.c After administration of protamine which dose is calculated with heparin dose-response curve, ACTs were returned to normal range[mean 114.8 $\pm$13 second]. The heparin sensitivity and its half-life do not have relationship with age, weight, height, surface area and urine amount during operation. And there are too much individual variations in heparin sensitivity and its half-life. So conventional heparin protocols can overestimate or underestimate the amount of heparin and protamine. Heparin dose-response curve makes it possible to maintain anticoagulation in a safe range during bypass with adequate amount of heparin individually. At the conclusion of bypass, this curve can be used to predict the precise amount of protamine amount of protamine needed for neutralization of the heparin. But heparin dose-response curve to be used clinically, further studies will be needed about relationship between ACT and heparin level in the high range, influence of hemodilution and hypothermia to ACT and discrepancy between true adequate amount of protamine and calculated amount by heparin dose-response curve.

  • PDF