• Title/Summary/Keyword: DOE (design of experiments)

Search Result 225, Processing Time 0.024 seconds

Optimization of Peel Adhesion of Acrylic Pressure Sensitive Adhesive using Design of Experiments (실험계획법을 이용한 아크릴 점착제의 점착력 최적화)

  • Lee, Young Sang;Ha, Jin Kuk;Lee, Euy Soo
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • The effect of functional monomers on the acrylic pressure sensitive adhesive (PSA) property was measured. Design of experiments in order to optimal peel adhesion was applied and commercial program (MINITAB) was used. Analysis was used to mixture design (special cubic model) in response surface methodology. Optimal monomer compositions was construed by 2-EHA (0.8861), EA (0.0639), MAA (0.03) and AAm (0.02). The estimated regression equation was as follows : $$y=54.8816x_1+80.7067x_2-44.4700x_3-99.0288x_1x_2+60.7706x_1x_3-441.030x_2x_3+974.341x_1x_2x_3$$.

  • PDF

Decomposition of Triclosan onto E-beam Process using a Design of Experiment(DOE) (전자빔을 이용한 triclosan 제거에 있어서 실험계획법의 이용)

  • Jang, Tae-Bum;Lee, Si-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • This study investigated on the photolytic degradation of Triclosan by E-beam process. The optimization of process was investigated during a series of batch experiments by design of experiments(DOEs). The DOE was one of the statistical application that was used for designed the response surface to determine the effects of each parameters. The responses were applied as removal rate of Triclosan(%, $Y_1$) and TOC removal rate(%, $Y_2$). Two independent variables were concentration of Triclosan and irradiation intensity that were designed as "$x_1$" and irradiation intensity was designed as "$x_2$". The regression equation in coded parameter between the Triclosan removal efficiencies(%) and TOC removal efficiencies(%) was $Y_1=63-12.4335x_1+15.1835x_2+5.8125x{_1}^2-5.6875x{_2}^2-0.75x_1x_2(R^2=95.1%,\;R^2(Adj)=91.7%)$ and $Y_2=46-8.8462x_1+11.7175x_2-0.75x{_1}^2-6.25x{_2}^2(R^2=98.7%,\;R^2(Adj)=97.7%)$, respectively. The model predictions agreed well with the experimentally observed results $R^2$ and $R^2(Adj)$ over 90% within both of $Y_1$ and $Y_2$. This result shows that the regression model express well about the effects of parameters on E-beam process and the statistical method was successfully applied.

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

The effect of permanent magnet in MAP of magnesium alloy for external case of notebook compute (노트북 케이스용 마그네슘의 자기연마가공에서 영구자석의 효과)

  • Kim, Sang-Oh;Gang, Dea-Min;Kwak, Jae-Seob;Jung, Young-Deug
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.48-53
    • /
    • 2012
  • In previous study, it showed that the MAP was greatly effective polishing process for magnesium plate. But it had lower efficiency than magnetic materials such as SM45C. It was very difficult to cut non-magnetic materials using the MAP process because the process was fundamentally possible by help of a magnetic force. This study aimed to verify analytically formation of the magnetic field in a case of the non-magnetic materials especially focused on magnesium plate. So, In this study, the magnetic density flux was predicted using simulation program. As a result, the magnetic density flux was lower at the center of pole on inductor than outside. It had same result on the experimental verification. And magnetic force was lower according to increase of working gap. So, to improve the magnetic force, permanent magnet was installed under the workpiece. In that case, the magnetic density flux not only at center but also at outside of pole was increased. Therefore, the efficiency of magnetic abrasive polishing was also increased. A design of experimental method was adopted for assessment of parameters' effect on the MAP results of magnesium plate for improving the magnetic force.

  • PDF

The effect of permanent magnet in MAP of magnesium alloy for external case of notebook compute (노트북 케이스용 마그네슘의 자기연마가공에서 영구자석의 효과)

  • Kim, Sang-Oh;Gang, Dea-Min;Kwak, Jae-Seob;Jung, Young-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.45-50
    • /
    • 2008
  • In previous study, it showed that the MAP was greatly effective polishing process for magnesium plate. But it had lower efficiency than magnetic materials such as SM45C. It was very difficult to cut non-magnetic materials using the MAP process because the process was fundamentally possible by help of a magnetic force. This study aimed to verify analytically formation of the magnetic field in a case of the non-magnetic materials especially focused on magnesium plate. So, In this study, the magnetic density flux was predicted using simulation program. As a result, the magnetic density flux was lower at the center of pole on inductor than outside. It had same result on the experimental verification. And magnetic force was lower according to increase of working gap. So, to improve the magnetic force, permanent magnet was installed under the workpiece. In that case, the magnetic density flux not only at center but also at outside of pole was increased. Therefore, the efficiency of magnetic abrasive polishing was also increased. A design of experimental method was adopted for assessment of parameters' effect on the MAP results of magnesium plate for improving the magnetic force.

  • PDF

Analysis of Material Removal Rate of Glass in MR Polishing Using Multiple Regression Design (다중회귀분석을 이용한 BK7 글래스 MR Polishing 공정의 재료 제거 조건 분석)

  • Kim, Dong-Woo;Lee, Jung-Won;Cho, Myeong-Woo;Shin, Young-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.184-190
    • /
    • 2010
  • Recently, the polishing process using magnetorheological fluids(MR fluids) has been focused as a new ultra-precision polishing technology for micro and optical parts such as aspheric lenses, etc. This method uses MR fluid as a polishing media which contains required micro abrasives. In the MR polishing process, the surface roughness and material removal rate of a workpiece are affected by the process parameters, such as the properties of used nonmagnetic abrasives(particle material, size, aspect ratio and density, etc.), rotating wheel speed, imposed magnetic flux density and feed rate, etc. The objective of this research is to predict MRR according to the polishing conditions based on the multiple regression analysis. Three polishing parameters such as wheel speed, feed rates and current value were optimized. For experimental works, an orthogonal array L27(313) was used based on DOE(Design of Experiments), and ANOVA(Analysis of Variance) was carried out. Finally, it was possible to recognize that the sequence of the factors affecting MRR correspond to feed rate, current and wheel speed, and to determine a combination of optimal polishing conditions.

Effect of the Molding Conditions on Formability in Progressive Glass Molding Press (순차이송방식 GMP 공정에서 공정변수가 유리렌즈 성형성에 미치는 영향)

  • Jung, T.S.;Park, K.S.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.633-639
    • /
    • 2009
  • Remarkable progress had been made in both technology and production of optical elements including aspheric lens. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. Against such a background, the high-precision optical GMP process was developed with an eye on mass production of precision optical glass pasts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as for cameras, video cameras, aspheric lenses for optical items. In this study, Design Of Experiment(Taguchi method) was adopted to find a tendency of molding conditions that influence formability. Three main factors for molding conditions were selected based on pressure at pressing stage and temperature, pressure at cooling stage. Also, the DOE was carried out and the interference patterns were measured to evaluate the formability of GMP process. From the results, it was found that the cooling pressure is the most sensitive parameter for progressive GMP process.

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Optimal Design of Impeller according to Blade Shape Variation Using CFD Simulation (CFD를 이용한 블레이드 형상 변화에 따른 블로워 임펠러 최적설계)

  • Yu, Da-Mi;Kim, Semo;Jang, Hye-Lim;Han, Dae-Hyun;Kang, Lae-Hyong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • The objective of this study was to investigate the influence of the blade shape on the impeller performance, for design optimizing of the high airflow impeller. First, the quantity, angle, and length of blades, which are considered to have a large influence on the impeller performance, were selected as design variables. Then, 27 cases of impeller shapes were selected according to the design of experiment (DOE). To predict the conduct of the blower based on the selected impeller shape, flow analysis was performed using the immersed solid method of ANSYS CFX. In the CFD results, the highest airflow was expected in the impeller having a combination of 50 EA, $6^{\circ}$ and 5 mm. Finally, a blower with the original impeller shape and the optimized impeller shape was fabricated using a 3D printer, and the analysis tendency and experimental tendency were verified through experiments.

Optimum Design of Dynamic Vibration Absorber for Reducing Bending Vibrations of Two-Piece Vehicle Drive Line (2축 분할식 차량 구동라인의 굽힘진동 저감을 위한 동흡진기 최적설계)

  • Lee, Sang-Beom;Yoo, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.118-124
    • /
    • 2010
  • In this paper, design parameters of dynamic vibration absorber, which is used to reduce bending vibrations of a vehicle drive line, is optimized. For obtaining the correct dynamic response characteristics, a flexible-body drive line is made by applying the flexibility data extracted from vibration analysis of propeller shafts to the drive line dynamic model. Inner tube mass, rubber stiffness and rubber damping coefficient of the dynamic vibration absorber are taken as design parameters for optimization. To minimize the vertical acceleration of the drive line, a second-order regression equation of the objective function is generated by performing the central composite experimental design with 3 factors, 2 levels and 15 test runs. And the design parameters of the dynamic vibration absorber are determined by using optimization program. The vehicle model with optimized dynamic vibration absorber reduces the vertical acceleration peak of the drive line by 17.1 % in compared with the initial model.