• Title/Summary/Keyword: DOE(Design Of Experiments)

검색결과 224건 처리시간 0.027초

3SC 실용트리즈와 실험계획법을 이용한 PLGA인공지지체 제작조건에 관한 연구 (A Study on Manufacturing Condition of PLGA Scaffold Using 3SC Practical TRIZ and Design of Experiments)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.70-75
    • /
    • 2018
  • In this paper, we have studied the deformation problem of the scaffold caused by the FDM type 3D printer. The DOE (Design of experiment) and 3SC was used to solve the deformation problem of the scaffold generated from the adhesion surface between the scaffold and the bed. The methodology was used to derive the solution and the experiment was conducted on the derived solution. As a result of evaluating the experimental results obtained for the solution, it was found that the deformation of the scaffold was much improved. By using the DOE, We were possible to derive the output condition of scaffold.

점용접부 내구 영향도 지수와 실험 계획법을 이용한 자동차 부품 점용접 설계 (Design of Spot Weld Based on the Durability Influence Index and the DOE Analysis)

  • 최누리;주병현;박정민;엄재성;변형배;김동석;이병채
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1142-1147
    • /
    • 2006
  • A practical method for reducing the number of spot welds in automotive structures considering fatigue crack initiation life is suggested. At first, an influence index for the durability and the fatigue life of a spot weld itself is defined and then taken as the main effect of the DOE analysis. Spot welds that can be removed without serious reduction of durability through numerical experiments are selected by the results of DOE. The proposed method was applied to the shock tower and LCA(lower control arm) structure of a vehicle, which are important components in durability-related point of view.

저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계 (Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car)

  • 장운근
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5955-5962
    • /
    • 2014
  • 일반적으로 고성능의 레이스카나 스포츠카 시장에서 차량의 프레임 설계는 매우 중요한 기술적 요소로 작용하고 있다. 차량의 비틀림 강성은 차량의 코너링 성능에 많은 영향을 주기 때문에 레이스 차량에 있어 우수한 성능의 프레임이라는 것은 높은 비틀림 강성을 가진다는 것을 뜻한다. 본 연구에서는 입문용 포뮬러 레이스카 프레임의 최적 비틀림 강성 설계를 위하여 다구찌 직교배열표를 가진 실험계획법과 유한요소 해석 기술을 이용하였다. 이러한 기법을 통해서 얻은 결과가 초기설계단계에서 보다 14.5%의 무게를 감량함과 동시에 무게 대비 비틀림 강성 10.7%의 개선 효과를 볼 수가 있었다. 따라서 본 연구에서는 직교배열표를 가지는 실험계획법을 이용한 구조해석이 설계 초기단계에서 저가형 레이스 차량에 사용되는 Tubular space frame 설계에 매우 유용함을 나타내고 있다.

실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구 (Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments)

  • 김진태;김민진;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

Optimization of Lactic Acid Production in SSF by Lactobacillus amylovorus NRRL B-4542 Using Taguchi Methodology

  • Nagarijun Pyde Acharya;Rao Ravella Sreenivas;Rajesham Swargam;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • 제43권1호
    • /
    • pp.38-43
    • /
    • 2005
  • Lactic acid production parameter optimization using Lactobacillus amylovorus NRRL B-4542 was performed using the design of experiments (DOE) available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical parameters and key media components namely temperature, pH, inoculum size, moisture, yeast extract, $MgSO_4{\cdot}7H_20$, Tween 80, and corn steep liquor (CSL) were determined. Among the physical parameters, temperature contributed higher influence, and among media components, yeast extract, $MgSO_4{\cdot}7H_20$, and Tween 80 played important roles in the conversion of starch to lactic acid. The expected yield of lactic acid under these optimal conditions was 95.80% and the actual yield at optimum conditions was 93.50%.

원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구 (A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor)

  • 서정민;박준영;최범석
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

실험설계법 기반 풍동시험 시스템 오차 검출 실험연구 (Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments)

  • 오세윤;박승오;안승기
    • 한국항공우주학회지
    • /
    • 제41권5호
    • /
    • pp.335-341
    • /
    • 2013
  • 풍동시험 중에 발생하는 시스템오차의 변동에 관한 연구를 수행하였다. 회전익 항공기의 기체 공력특성 측정실험에 실험설계 방법론이 적용되었다. 풍동시험 중에 발생하는 시스템오차의 변동에 관한 연구를 수행하였다. 허용 실험오차 내에서 항상 동일한 결과를 얻어야 하는 전제조건에도 불구하고 한 개의 실험시간 블록에서 측정된 힘과 모멘트가 다른 시간블록에서 측정된 것과 상당량 다르게 측정되었다. 실험관련 시스템오차는 존재하지 않는다고 임의로 간주해서는 안되며 이러한 오차의 감소는 랜덤화, 블록화 및 반복화 등의 실험설계원리의 적용을 통해 가능하다.

EFFECTIVE REINFORCEMENT OF S-SHAPED FRONT FRAME WITH A CLOSED-HAT SECTION MEMBER FOR FRONTAL IMPACT USING HOMOGENIZATION METHOD

  • CHO Y.-B.;SUH M.-W.;SIN H.-C.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.643-655
    • /
    • 2005
  • The frontal crash optimization of S-shaped closed-hat section member using the homogenization method, design of experiment (DOE) and response surface method (RSM) was studied. The optimization to effectively absorb more crash energy was studied to introduce the reinforcement design. The main focus of design was to decide the optimum size and thickness of reinforcement. In this study, the location of reinforcement was decided by homogenization method. Also, the effective size and thickness of reinforcements was studied by design of experiments and response surface method. The effects of various impact velocity for reinforcement design were researched. The high impact velocity reinforcement design showed to absorb the more crash energy than low velocities design. The effect of size and thickness of reinforcement was studied and the sensitivity of size and thickness was different according to base thickness of model. The optimum size and thickness of the reinforcement has shown a direct proportion to the thickness of base model. Also, the thicker the base model was, the effect of optimization using reinforcement was the bigger. The trend curve for effective size and thickness of reinforcement using response surface method was obtained. The predicted size and thickness of reinforcement by RSM were compared with results of DOE. The results of a specific dynamic mean crushing loads for the predicted design by RSM were shown the small difference with the predicted results by RSM and DOE. These trend curves can be used as a basic guideline to find the optimum reinforcement design for S-shaped member.

통합설계방법을 적용한 가동자석형 3축 액추에이터의 설계 (Design of 3-Axis Moving Magnet Type Electromagnetic Actuator using Integrated Design Method)

  • 김상용;박노철;박영필;박경수
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.80-84
    • /
    • 2011
  • In this paper, we propose the integrated design method that enables multi-physics modeling and coupled-field analysis by connecting an electromagnetic field and a structural field. We design the 3-axis moving magnet type actuator that has the high structural stiffness and the effective electromagnetic circuit generating large electromagnetic force. Through design of experiments (DOE) and optimization, the designed actuator is optimized and satisfies high dynamic characteristics over the desired specifications.