• Title/Summary/Keyword: DNN model

검색결과 235건 처리시간 0.022초

DNN-HMM 기반 시스템을 이용한 효과적인 구개인두부전증 환자 음성 인식 (Effective Recognition of Velopharyngeal Insufficiency (VPI) Patient's Speech Using DNN-HMM-based System)

  • 윤기무;김우일
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.33-38
    • /
    • 2019
  • 본 논문에서는 효과적으로 VPI 환자 음성을 인식하기 위해 DNN-HMM 하이브리드 구조의 음성 인식 시스템을 구축하고 기존의 GMM-HMM 기반의 음성 인식 시스템과의 성능을 비교한다. 정상인의 깨끗한 음성 데이터베이스를 이용하여 초기 모델을 학습하고 정상인의 VPI 모의 음성을 이용하여 VPI 환자 음성에 대한 화자 인식을 위한 기본 모델을 생성한다. VPI 환자의 화자 적응 시에는 DNN의 각 층 별 가중치 행렬을 부분적으로 학습하여 성능을 관찰한 결과 GMM-HMM 인식기보다 높은 성능을 나타냈다. 성능 향상을 위해 DNN 모델 적응을 적용하고 LIN 기반의 DNN 모델 적용 결과 평균 2.35%의 인식률 향상을 나타냈다. 또한 소량의 데이터를 사용했을 때 GMM-HMM 기반 음성인식 기법에 비해 DNN-HMM 기반 음성 인식 기법이 향상된 VPI 음성 인식 성능을 보인다.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.1-11
    • /
    • 2023
  • 유방암은 전 세계적으로 여성들 대다수에게 가장 두려워하는 질환이다. 오늘날 데이터의 증가와 컴퓨팅 기술의 향상으로 머신러닝(machine learning)의 효율성이 증대되어 암 검출 및 진단 등에 중요한 역할을 하고 있다. 딥러닝(deep learning)은 인공신경망(artificial neural network, ANN)을 기반으로 하는 머신러닝 기술의 한 분야로 최근 여러 분야에서 성능이 급속도로 개선되어 활용 범위가 확대되고 있다. 본 연구에서는 유방암 분류를 위해 전이학습(transfer learning) 기반 DNN(Deep Neural Network)과 SVM(support vector machine)의 구조를 결합한 DNN-SVM Hybrid 모형을 제안한다. 전이학습 기반 제안된 모형은 적은 학습 데이터에도 효과적이고, 학습 속도도 빠르며, 단일모형, 즉 DNN과 SVM이 가지는 장점을 모두 활용 가능토록 결합함으로써 모형 성능이 개선되었다. 제안된 DNN-SVM Hybrid 모형의 성능평가를 위해 UCI 머신러닝 저장소에서 제공하는 WOBC와 WDBC 유방암 자료를 가지고 성능실험 결과, 제안된 모형은 여러 가지 성능 척도 면에서 단일모형인 로지스틱회귀 모형, DNN, SVM 그리고 앙상블 모형인 랜덤 포레스트보다 우수함을 보였다.

DNN과 LSTM을 활용한 콘크리트의 건조수축량 예측성능 평가 (Performance Evaluation of Concrete Drying Shrinkage Prediction Using DNN and LSTM)

  • 한준희;임군수;이현직;박재웅;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.179-180
    • /
    • 2023
  • In this study, the performance of the prediction model was compared and analyzed using DNN and LSTM learning models to predict the amount of dry shrinkage of the concrete. As a result of the analysis, DNN model had a high error rate of about 51%, indicating overfitting to the training data. But, the LSTM learning model showed a relatively higher accuracy with an error rate of 12% compared to the DNN model. Also, the Pre_LSTM model which preprocess data, showed the performance with an error rate of 9% and a coefficient of determination of 0.887 in the LSTM learning model.

  • PDF

양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구 (A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis)

  • 최주희;고민삼;이한승
    • 한국건축시공학회지
    • /
    • 제22권6호
    • /
    • pp.619-630
    • /
    • 2022
  • 콘크리트의 배합설계와 압축강도 평가는 지속가능한 구조물의 내구성을 위한 기초적인 자료로서 활용되고 있다. 하지만, 콘크리트 배합설계는 최근 배합요소의 다변화 등의 이유로 인하여 정확한 배합요소 산정이나 기준값 설정에 어려움을 겪고 있다. 본 연구에서는 인공지능 기법 중 하나인 딥러닝 기법을 사용하여 삼성분계 콘크리트의 배합요소를 산정하는 양방향 해석의 예측모델을 설계하는 것을 목적으로 한다. 콘크리트 배합요소 산정을 위한 DNN 기반 예측모 델은 층 수, 은닉 뉴런 수를 변수로 한 총 8개의 모델을 사용하여 성능평가 및 비교를 실시하였으며, 이후 학습된 DNN 모델을 사용하여 소요압축강도에 따른 콘크리트 배합 산정 결과를 출력하였다. 모델의 성능평가 결과, 콘크리트 압축 강도 인자에 대하여 평균 약 1.423%의 오류율을 나타내었으며, 삼성분계 콘크리트 배합인자 예측에 대하여 평균 8.22%의 MAPE 오차를 만족하였다. DNN 모델의 구조별 성능평가 비교 결과, 모든 배합인자에 대하여 DNN5L-2048 모델이 가장 높은 성능을 보였다. 학습된 DNN 모델을 사용하여 30, 50MPa의 소요압축강도를 가지는 삼성분계 콘크 리트 배합표 예측을 진행하였으며, 추후 학습을 위한 데이터 세트 확장과 실제 콘크리트 배합표와 DNN 모델 출력 콘 크리트 배합표 간의 비교를 통한 검증 과정이 필요할 것으로 판단된다.

딥 뉴럴 네트워크 기반의 음성 향상을 위한 데이터 증강 (Data Augmentation for DNN-based Speech Enhancement)

  • 이승관;이상민
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.749-758
    • /
    • 2019
  • This paper proposes a data augmentation algorithm to improve the performance of DNN(Deep Neural Network) based speech enhancement. Many deep learning models are exploring algorithms to maximize the performance in limited amount of data. The most commonly used algorithm is the data augmentation which is the technique artificially increases the amount of data. For the effective data augmentation algorithm, we used a formant enhancement method that assign the different weights to the formant frequencies. The DNN model which is trained using the proposed data augmentation algorithm was evaluated in various noise environments. The speech enhancement performance of the DNN model with the proposed data augmentation algorithm was compared with the algorithms which are the DNN model with the conventional data augmentation and without the data augmentation. As a result, the proposed data augmentation algorithm showed the higher speech enhancement performance than the other algorithms.

계층 연관성 전파를 이용한 DNN PM2.5 예보모델의 입력인자 분석 및 성능개선 (Analysis of Input Factors and Performance Improvement of DNN PM2.5 Forecasting Model Using Layer-wise Relevance Propagation)

  • 유숙현
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1414-1424
    • /
    • 2021
  • In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.

Deep Neural Network 기반 프로야구 일일 관중 수 예측 : 광주-기아 챔피언스 필드를 중심으로 (Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field)

  • 박동주;김병우;정영선;안창욱
    • 스마트미디어저널
    • /
    • 제7권1호
    • /
    • pp.16-23
    • /
    • 2018
  • 본 연구는 Deep Neural Network(DNN)을 이용하여 광주-기아 챔피언스 필드의 일일 관중 수를 예측함으로써 이를 통해 구단과 관련기업의 마케팅 자료제공 및 구장 내 부대시설의 재고관리에 자료로 쓰임을 목적으로 수행 되었다. 본 연구에서는 Artificial Neural Network(ANN)의 종류인 DNN 모델을 이용하였으며 DNN 모델의 과적합을 막기 위해 Dropout과 Batch normalization 적용한 모델을 바탕으로 총 4종류를 설계하였다. 각각 10개의 DNN을 만들어 예측값의 Root Mean Square Error(RMSE)와 Mean Absolute Percentage Error(MAPE)의 평균값을 낸 모델과 예측값의 평균으로 RMSE와 MAPE를 평가한 Ensemble 모델을 만들었다. 모델의 학습 데이터는 2008년부터 2017년까지의 관중 수 데이터를 수집하여 수집된 데이터의 80%를 무작위로 선정하였으며, 나머지 20%는 테스트 데이터로 사용하였다. 총 100회의 데이터 선정, 모델구성 그리고 학습 및 예측을 한 결과 Ensemble 모델은 DNN 모델의 예측력이 가장 우수하게 나왔으며, 다중선형회귀 모델 대비 RMSE는 15.17%, MAPE는 14.34% 높은 예측력을 보이고 있다.

혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안 (Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture)

  • 최주희;이광수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF

동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발 (Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data)

  • 유숙현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

A DNN-Based Personalized HRTF Estimation Method for 3D Immersive Audio

  • Son, Ji Su;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.161-167
    • /
    • 2021
  • This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.