• Title/Summary/Keyword: DNL

Search Result 156, Processing Time 0.028 seconds

Polymorphisms in Genes of the De Novo Lipogenesis Pathway and Overall Survival of Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolization

  • Wu, You-Sheng;Bao, Deng-Ke;Dai, Jing-Yao;Chen, Cheng;Zhang, Hong-Xin;Yang, YeFa;Xing, Jin-Liang;Huang, Xiao-Jun;Wan, Shao-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1051-1056
    • /
    • 2015
  • Aberrant expression of genes in de novo lipogenesis (DNL) pathway were associated with various cancers, including hepatocellular carcinoma (HCC). Single nucleotide polymorphisms (SNPs) of DNL genes have been reported to be associated with prognosis of some malignancies. However, the effects of SNPs in DNL genes on overall survival of HCC patients receiving transarterial chemoembolization (TACE) treatment are still unknown. In present study, nine SNPs in three genes (ACLY, ACACA and FASN) in DNL pathway were genotyped using the Sequenom iPLEX genotyping system in a hospital-based cohort with 419 HCC patients treated with TACE, and their associations with HCC overall survival were evaluated by Cox proportional hazard regression analysis under three genetic models (additive, dominant and recessive). Although we did not find any significant results in total analysis (all p>0.05), our stratified data showed that SNP rs9912300 in ACLY gene was significantly associated with overall survival of HCC patients with lower AFP level and SNP rs11871275 in ACACA gene was significantly associated with overall survival of HCC patients with higher AFP level. We further identified the significant interactions between AFP level and SNP rs9912300 or rs11871275 in the joint analysis. Conclusively, our data suggest that genetic variations in genes of DNL pathway may be a potential biomarker for predicting clinical outcome of HCC patients treated with TACE.

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF

A CMOS Digital-to-Analog Converter to Apply a Newly-Developed Digital-to-Analog Conversion Algorithm (새로운 디지털-아날로그 변환알고리즘을 적용한 CMOS 디지털-아날로그 변환기)

  • 송명호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.57-63
    • /
    • 1998
  • This paper describes a CMOS digital-to-analog converter to apply a newly-developed digital-to-analog conversion algorithm. The CMOS digital-to-analog converter has been designed by using 1.2$\mu\textrm{m}$ MOSIS SCMOS parameter and simulated for the performance. The simulated results have shown that the digital-to-analog converter has 200MHz of the maximum conversion rate, 7.41mW of the DC power consumption, and ${\pm}$0.08LSB of INL and ${\pm}$0.098LSB of DNL in 8-b.

  • PDF

Low-power Analog-to-Digital Converter for video signal processing (비디오 신호처리용 저전력 아날로그 디지털 변환기)

  • 조성익;손주호;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1259-1264
    • /
    • 1999
  • In this paper, the High-speed, Low-power Analog-Digital Conversion Archecture is porposed using the Pipelined archecture for High-speed conversion rate and the Successive-Approximation archecture for Low-power consumption. This archecture is the Successive-Approximation archecture using Pipelined Comparator array to change reference voltage during Holding Time. The Analog-to-Digital Converter for video processing is designed using 0.8${\mu}{\textrm}{m}$ CMOS tchnology. When an 6-bit 10MS/s Analog-to-Digital Converter is simulatined, the INL/DNL errors are $\pm$0.5/$\pm$1, respectively. The SNR is 37dB at a sampling rate of 10MHz with 100KHz sine input signal. The power consumption is 1.46mW at 10MS/s. When an 8-bit 10MS/s Analog-to Digital Converter is simulatined, the INL/DNL errors are $\pm$0.5/$\pm$1, respectively. The SNR is 41dB at a sampling rate of 100MHz with 100KHz sine input signal. The power consumption is 4.14m W at 10MS/s.

  • PDF

Design of High Speed Pipelined ADC for System-on-Panel Applications (System-on-Panel 응용을 위한 고속 Pipelined ADC 설계)

  • Hong, Moon-Pyo;Jeong, Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • We designed an ADC that operated upto 500Msamples/sec based on proposed R-string folding block as well as second folding block. The upper four bits are processed in parallel by the R-string folding block while the lower four bits are processed in pipeline structured second folding block to supply digital output. To verify the circuit performance, we conducted HSPICE simulation and the average power consumption was only 1.34mW even when the circuit was running at its maximum sampling frequency. We further measured noise immunity by applying linear ramp signal to the input. The DNL was between -0.56*LSB and 0.49*LSB and the INL was between -0.93*LSB and 0.72*LSB. We used 0.35 microns MOSIS device parameters for this work.

A Design of 10 bit Current Output Type Digital-to-Analog Converter (10-비트 전류출력형 디지털-아날로그 변환기의 설계)

  • Gyoun Gi-Hyub;Kim Tae-Min;Shin Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1073-1081
    • /
    • 2005
  • This paper describes a 3.3 V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method. Most of Dfh converters with hiか speed current drive are an architecture choosing current switch cell, column, row decoding method but this decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. The designed D/A converter with an active chip area of $0.953\;mm^2$ is fabricated by using a 0.35um process. The simulation data shows that the rise/fall time, settling time, and INL/DNL are 1.92/2.1 ns, 12.71 ns, and a less than ${\pm}2.3/{\pm}58$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3 V is about 224 mW.

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.

A 125 MHz CMOS Delay-Locked Loop with 32-phase Output Clock (32 위상의 출력 클럭을 가지는 125 MHz CMOS 지연 고정 루프)

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • A delay-locked loop (DLL) that generates a 32-phase clock with the operating frequency of 125 MHz is introduced. The proposed DLL uses a delay line of $4{\times}8$ matrix architecture to improve a differential non-linearity (DNL) of the delay line. Furthermore, a integral non-linearity (INL) of the proposed DLL is improved by calibrating phases of clocks that is supplied to four points of an input stage of the $4{\times}8$ matrix delay line. The proposed DLL is fabricated by using $0.11-{\mu}m$ CMOS process with a 1.2 V supply. The measured operating frequency range of the implemented DLL is 40 MHz to 280 MHz. At the operating frequency of 125MHz, the measurement results shows that the DNL and INL are +0.14/-0.496 LSB and +0.46/-0.404 LSB, respectively. The measured peak-to-peak jitter of the output clock is 30 ps when the peak-to-peak jitter of the input clock is 12.9 ps. The area and power consumption of the implemented DLL are $480{\times}550{\mu}m^2$ and 9.6 mW, respectively.