DOI QR코드

DOI QR Code

A 125 MHz CMOS Delay-Locked Loop with 32-phase Output Clock

32 위상의 출력 클럭을 가지는 125 MHz CMOS 지연 고정 루프

  • 이광훈 (금오공과대학교 전자공학과) ;
  • 장영찬 (금오공과대학교 전자공학부)
  • Received : 2012.07.25
  • Accepted : 2012.09.09
  • Published : 2013.01.31

Abstract

A delay-locked loop (DLL) that generates a 32-phase clock with the operating frequency of 125 MHz is introduced. The proposed DLL uses a delay line of $4{\times}8$ matrix architecture to improve a differential non-linearity (DNL) of the delay line. Furthermore, a integral non-linearity (INL) of the proposed DLL is improved by calibrating phases of clocks that is supplied to four points of an input stage of the $4{\times}8$ matrix delay line. The proposed DLL is fabricated by using $0.11-{\mu}m$ CMOS process with a 1.2 V supply. The measured operating frequency range of the implemented DLL is 40 MHz to 280 MHz. At the operating frequency of 125MHz, the measurement results shows that the DNL and INL are +0.14/-0.496 LSB and +0.46/-0.404 LSB, respectively. The measured peak-to-peak jitter of the output clock is 30 ps when the peak-to-peak jitter of the input clock is 12.9 ps. The area and power consumption of the implemented DLL are $480{\times}550{\mu}m^2$ and 9.6 mW, respectively.

125 MHz 동작 주파수에서 32개의 다중 위상의 클럭을 출력하는 지연 고정 루프(DLL: delay-locked loop)를 제안한다. 제안된 다중 위상 지연 고정루프는 delay line의 differential non-linearity (DNL)를 개선하기 위해 $4{\times}8$ matrix 구조의 delay line을 사용한다. 또한, $4{\times}8$ matrix delay line 입력 단의 네 지점에 공급되는 클럭의 위상을 보정함으로써 제안하는 지연 고정 루프의 integral non-linearity (INL)을 개선한다. 제안된 지연 고정 루프는 1.2 V의 공급전압을 이용하는 $0.11-{\mu}m$ CMOS 공정에서 제작하였다. 제작된 지연 고정 루프는 40 MHz에서 280 MHz의 동작 주파수 범위를 가지며, 125 MHz 동작 주파수에서 측정된 DNL과 INL은 각각 +0.14/-0.496 LSB, +0.46/-0.404 LSB이다. 입력 클럭의 peak-to-peak jitter가 12.9 ps일 때 출력 클럭의 측정된 peak-to-peak jitter는 30 ps이다. 제작된 고정 지연 루프의 면적과 전력 소모는 각각 $480{\times}550{\mu}m^2$과 9.6 mW이다.

Keywords

References

  1. J. G. Maneatis and M. A. Horowitz, "Precise Delay Generation Using Coupled Oscillators," IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993. https://doi.org/10.1109/4.262000
  2. S. Sidiropoulos and M. A. Horowitz, "A Semidigital Dual Delay-Locked Loop," IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997. https://doi.org/10.1109/4.641688
  3. Y. Moon, J. Choi, K. Lee, D. Jeong, and M. Kim, "An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance," IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 377-384, Mar. 2000. https://doi.org/10.1109/4.826820
  4. J.-M. Chou, Y.-T. Hsieh, and J.-T. Wu, "Phase averaging and interpolation using resistor strings or resistor rings for multi-phase clock generation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 5, pp. 984-991, May 2006. https://doi.org/10.1109/TCSI.2006.869905
  5. Y.-S. Kim, S.-K. Lee, H.-J. Park and J.-Y. Sim, "A 110 MHz to 1.4 GHz Locking 40-Phase All-Digital DLL," IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 435-444, Feb. 2011. https://doi.org/10.1109/JSSC.2010.2092996
  6. Y.-S. Kim, S.-J. Park, Y.-S. Kim, D.-B. Jang, S.-W. Jeong, H.-J. Park and J.-Y. Sim, "A 40-to-800 MHz locking multi-phase DLL," IEEE Int. Solid-State Circuits Conf. 2007 Dig. Tech Papers, pp.306-307, Feb. 2007.