• 제목/요약/키워드: DNA-repair

검색결과 570건 처리시간 0.019초

Cellular DNA Repair of Oxidative Deoxyribose Damage by Mammalian Long-Patch Base Excision Repair

  • Sung Jung-Suk;Son Mi-Young
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.103-108
    • /
    • 2005
  • 2-Deoxyribonolactone (dL) arises as a major DNA damage induced by a variety of agents, involving free radical attack and oxidation of C1'-deoxyribose in DNA. We investigated whether dL lesions can be repaired in mammalian cells and the mechanisms underlying the role of DNA polymerase $\beta$ in processing of dL lesions. Pol $\beta$ appeared to be trapped by dL residues, resulting in stable DNA-protein cross-links. However, repair DNA synthesis at site-specific dL sites occurred effectively in cell-free extracts, but predominantly accompanied by long-patch base excision repair (BER) pathway. Reconstitution of long-patch BER demonstrated that FEN1 was capable of removing the displaced flap DNA containing a 5'-dL residue. Cellular repair of dL lesions was largely dependent on the DNA polymerase activity of Pol $\beta$. Our observations reveal repair mechanisms of dL and define how mammalian cells prevent cytotoxic effects of oxidative DNA lesions that may threaten the genetic integrity of DNA.

  • PDF

항 방사선 인삼단백분획의 DNA수복능력 증진효과 (DNA Repair Enhancement by Radioprotective Ginseng Protein Fraction)

  • 김춘미;최미경
    • 약학회지
    • /
    • 제36권5호
    • /
    • pp.449-454
    • /
    • 1992
  • The effect of radioprotective ginseng protein fraction on DNA repair capacity was determined by measuring the amount of $^{3}H-thymidine$ incorporated into DNA in the process of repair synthesis for UV damaged DNA. CHO-Kl cells were prepared whose semiconservative replication was inhibited by trimethylpsoralen plus near-UV(PUVA) treatment. When the cells were exposed to UV light alone, the DNA repair capacity was increased at first and then decreased as UV dose increased. However, when the ginseng fraction was treated to the cells, the DNA repair capacity was kept increasing regardless of UV dose increment. When the concentration of protein contained in the added fraction was increased gradually, the repair capacity was also increased almost linearly showing dose-response relationship of the effect. These results suggest that the enhancement of DNA repair capacity of the cell can be one of the mechanisms of radioprotection by the ginseng fraction.

  • PDF

DNA 염기손상 치유유전자의 변이와 두경부암 발생 위험성 (THE EFFECT OF GENETIC VARIATION IN THE DNA BASE REPAIR GENES ON THE RISK OF HEAD AND NECK CANCER)

  • 오정환;윤병욱;최병준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.509-517
    • /
    • 2008
  • DNA 손상 치유 유전자 연구를 기초로 한 임상적 접근이 새로운 치료방법으로 떠오르고 있다. 많은 연구들이 중요한 DNA 수복유전자의 다형성을 찾아내어 각각의 단백질의 활동성에 대한 영향을 알아내고 특정한 치료법을 찾아내고 임상적 적용을 시도하고 결과를 평가하였다. 그 결과 암 치료에서 정상 세포와 암세포에서 DNA 수복 유전자의 발현 분석은 화학요법이나 방사선 치료에서 개인맞춤형 치료법을 가능하게 하고 있다. 예를 들어, NER이 결핍된 종양은 cisplatin 치료에 민감성을 나타내고, MMR 결핍세포는 알킬화 화학요법 약제에 높은 내성을 나타낸다. 선천성 비폴립성 결장암과 같은 MMR 결손종양 또한 알킬화 화학요법 약제에 의한 치료에 내성을 가진다. 신경교종(glioma)에서 MGMT 유전자 프로모터가 흔히 메틸화되는데 이것은 유전자 발현이 억제되고 알킬화 화학요법제에 대한 반응성을 증가시킨다. 향후 구강악안면외과 영역에서도 구강암의 발생의 위험성을 증가시킬 수 있는 더 많은 DNA 수복 유전자의 다형성을 발굴하고 임상적으로 개인맞춤형 치료법을 개발하고 적용할 수 있는 많은 연구가 필요할 것으로 사료된다.

鹽基相似體를 前處理한 HeLa $S_3$ 細胞에 있어 Bleomycin에 의한 DNA 回復合成 (DNA Repair Synthesis Induced by Bleomycin in HeLa $S_3$ Cells Pretreated with Base Analogs)

  • Um, Kyung-Il;Park, Sang-Dai
    • 한국동물학회지
    • /
    • 제20권1호
    • /
    • pp.41-48
    • /
    • 1977
  • Bleomycin에 의해 유발된 DNA 회복합성은 저농도 처리군에서는 농도의 증가에 따라 증가하며 $5\\mu$g/ml 군에서 조사한 전세포의 15%가 회복합성을 하여 최고율을 보인다. 고농도 처리군에서 DNA 회복합성율이 감소하며 처리 시간을 연장해도 그율은 변화가 없다. BUdR이나 IUdR을 전처리한군에서는 DNA회복합성을 증가시키는 것으로 판명됐으며 또한 고동도 처리군에서는 정상적인 DNA 합성을 억제한다. 시간 변화에 따른 실험에서는 처리한 bleomycin을 제거한후 24시간까지 DNA 회복합성이 계속됐다. 이들 결과는 bleomycin이 excision repair를 유발하는 효과적인 화학물질이 아니며, bleomycin에 의해 유발되는 DNA의 손상은 DNA 나선 절단뿐만 아니라 다른 형태의 DNA 손상도 유발함을 추측할수 있다.

  • PDF

哺乳動物細胞에 있어 감마線에 의한 DNA 回復合成과 染色體交換과의 聯關性 (Gamma-ray Induced DNA Repair Synthesis in Relation to Chromosome Exchanges in Mammalian Cells in Vitro)

  • Park, Sang-Dai
    • 한국동물학회지
    • /
    • 제18권1호
    • /
    • pp.41-49
    • /
    • 1975
  • DNA 回復合成과 染色體交換과의 聯關性을 추구하기 위해 감마線을 照射한 BHK-21 과KB 細胞의 DNA 回復合成의 線量反應과 時期를 調査하였다. 감마 線에 의한 DNA 回復合成率은 5kR까지 照射線量에 比例하나 그후 50kR 까지는 變化가 없었다. DNA 回復合成의 初期 線量反應은 細胞에 따라 다르나 照射후 1$\\sim$2時間까지 지속하였다. 감마 線에 의한 染色體交換은 細胞에 따라 다른 感受性을 보였고 DNA 回復合成과의 聯關性을 보여주지 않았다.

  • PDF

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

환경성 유해요인이 유전물질과 세포활성에 미치는 영향 V. CHO세포에서 세포주기에 따라 돌연변이원에 의해 유발된 DNA회복합성에 미치는 DNA중합효소의 역할 (Environmental Toxic Agents on Genetic Material and Cellular Ativity V. The Roles of DNA Polymerases on Mutagen-Induced DNA Repair Synthesis in Relation to Cell Cycle in Chinese Hamster Ovary Cells)

  • 엄경일;김춘광;신은주;문용석;이천복
    • 한국환경성돌연변이발암원학회지
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 1989
  • Chinese hamster ovary (CHO)-K1 cells echibited a differential sensitivity in the process of DNA repair synthesis induced by ethyl methanesulfonate (EMS) or bleomycin (BLM) in relation to cell cycle. Two assays were employed in this study: alkaline elution and unscheduled DNA synthesis. The post-treat-ment with aphidicolin (APC), an inhibitor of DNA polymerase alpha, inhibited DNA repair synthesis induced by EMS in G2 phase, while APC did not show any effect on BLM-induced DNA repair synthesis in all phases. On the other hands, the 2', 3'-dideoxythymidine (ddTTP), an inhibitor of DNA polymerase beta, inhibited DNA repair synthesis induced by EMS or BLM in both of G1 and G2 phases. These results suggested that the involvement of DNA polymerase alpha and beta in DNA repair was dependent on cell stage or used chemical agent.

  • PDF

Collaborative Effect of CuZnSOD and Human AP Endonuclease against Oxidative Stress

  • Kim Young Gon
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2004년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.47-50
    • /
    • 2004
  • The defenses against free radical damage include specialized repair enzymes that correct oxidative damages in DNA, and detoxification systems such as superoxide dismutases. These defenses may be coordinated genetically as global responses. We hypothesized that the expression of the SOD and the DNA repair genes would inhibit DNA damage under oxidative stress. Therefore, the protection of E. coli mutants deficient in SOD and DNA repair genes $(sod^-\;xth^-\;and\;nfo^-)$ was demonstrated by transforming the mutant strain with a plasmid pYK9 which encoded Photobacterium leiognathi CuZnSOD and human AP endonuclease. The results show that survival rates were increased in $sod^+\;xth^-\;nfo^+$ cells compared to $sod^-\;xth^-\;ap^+,\;sod^-\;xth^-\;ap^-,\;and\;sod^+\;xth^-\;ap^-$ cells under oxidative stress generated from 0.1 mM Paraquat or 3 mM $H_2O_2$. The data suggested that, at least, SOD and DNA repair enzymes may have collaborate protection and repair of the damaged DNA. Additionally, both enzymes are required for protection against free radicals.

  • PDF

동시화된 포유동물세포에서 돌연변이원에 의해 유발된 DNA 회복합성 및 염색체이상에 미치는 3-Aminobenzamide의 영향 (Effect of 3-Aminobenzamide on DNA Repair Synthesis and Chromosome Aberrations Induced by Mutagens in Synchronized Mammalian Cells)

  • 신은주;강인영;엄경일
    • 한국환경성돌연변이발암원학회지
    • /
    • 제11권2호
    • /
    • pp.107-117
    • /
    • 1991
  • The effect of 3-aminobenzamide (3AB), an inhibitor of poly (ADP-ribose) polymerase, on ethyl methanesulfonate (EMS)-or bleomycin (BLM)-induced DNA repair synthesis and chromosome aberrations was examined during the cell cycle of Chinese hamster ovary (CHO)-K$_1$ cells. The synchronized cells were obtained by using thymidine double block method and mitotic selection method. Three assays were employed in this study: unscheduled DNA synthesis, alkaline elution and chromosome aberrations. 3AB alone did not induce DNA repair and chromosome aberrations in all phases. The post-treatment with 3AB inhibited DNA repair synthesis induced by EMS or BLM in G$_2$ phase, whereas 3AB did not affect chromosome aberrations induced by EMS or BLM in all phases. These results suggest that 3AB aggravates the cell cycle disturbance which occur after DNA damage, and leads to an accumulation of cells at G$_2$ phase, and inhibits DNA repair synthesis, while the effect 3AB on chromosome aberrations may need reevaluated.

  • PDF