• Title/Summary/Keyword: DNA-dependent

Search Result 1,349, Processing Time 0.025 seconds

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis

  • Jiangxin Xu;Xiangliang Huang;Yourong Zhou;Zhifei Xu;Xinjun Cai;Bo Yang;Qiaojun He;Peihua Luo;Hao Yan;Jie Jin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.647-657
    • /
    • 2024
  • Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.

Histological and Biochemical Studies on the Rooting of Hard-wood Cuttings in Mulberry (Morus species) (뽕나무 古條揷木의 發根에 關한 組織 및 生化學的 硏究)

  • Lim, Su-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.23 no.1
    • /
    • pp.1-31
    • /
    • 1981
  • Rootability of the hardwood cuttings of mulberry was related not only histological characteristics but dependent on biochemical properties. In this connection, the characteristics of the hardwood cuttings were histologically observed and the growth substances produced by the cuttings were also identified by means of mung bean bioassay. Amino acid, carbohydrate, nucleic acid contents, and the C/N ratio were also analysed. The results are summarized as follows. 1. There were differences in rootability of cuttings between mulberry species and varieties Among the three mulberry species tested, Morus Lhou Koidz. showed the highest rootability while M. bombycis showed the lowest one. In varietal differences in rootability, it was shown that the varieties could be grouped according to rootability: high varieties(above 80%), medium(41~79%), and low(below 40%). The higher varieties were Kemmochi, Nakamaki, Kosen, and Wusuba roso. 2. The histological characteristic of the hardwood cuttings most closely related to rootability was cell layer arrangement in the sclerenchyma tissue. The lower rootability varieties developed two or three overlapping cell layers in the bark tissue and in the higher rootability varieties they were scattered over the primary cortex. 3. In the higher rootability varieties, there was a positive correlation between the development of root primodia and rootability of the hardwood cuttings. It was also shown that there was a close relationship between the size of primodia and the surface area of the lenticel with rootability of the cuttings. 4. Effect of growth substances extracted from the hardwood cuttings were determined by mung bean bioassay. The higher rootability varieties usually showed higher activities of the growth substances, in contrast the lower rootability varieties showed higher activities of the inhibitory substances. 5. It was evident that the substance separated by paper chromatography was identified as indole acetic acid with $R_f$ value ranging from 0.3 to 0.5. The other substances detected at a $R_f$ value ranging from 0.8 to 1.0 and origin to 0.1 were also responsible for rooting. 6. There exists a quantitatively different distribution of growth substances in a synergistic system in the tissues of cuttings, and the balance between growth and inhibitory substances gives rise to the development of rooting. Particularly, no descent of the substances from winter buds resulted in no rooting of cuttings but these substances were produced a week after planting in a warm environment. 7. It was shown that there were positive correlations between carbohydrate ($r=0.72^*$) and total sugar ($r=0.67^*$) and rootability, respectively, but there were negative correlations between reducing sugars ($r=-0.75^*$) and rootability. 8. High C/N ratio gave rise to high rootability($r=0.67^*$). The latter therefore depended on high amount of carbohydrate rather than nitrogen in the cuttings. 9. The content of RNA and DNA in the cuttings was not changed for upto two weeks after the cuttings were planted. Then an increase in RNA content took place in only the high rootability varieties. 10. There were quantitative and qualitative differences in the compositions of the amino acids between the high rootability varieties and the low rootability varieties. More aspartic acid and cystine were found in the higher rootability varieties than in the low rootability varieties.

  • PDF

Association of SNP Markers on Chromosomes 3 and 9 with Body Weight in Jeju Horses (제주마에서 3번 및 9번 염색체상의 단일염기변이와 생체중과의 관련성 연구)

  • Kim, Nam Young;Yang, Young Hoon;Park, Nam Geon;Yang, Byoung Chul;Son, Jun Kyu;Shin, Sang Min;Woo, Jae Hoon;Shin, Moon Cheol;Yoo, Ji Hyun;Hong, Hyun Ju;Park, Hee Bok
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.795-801
    • /
    • 2018
  • This study was conducted to investigate the association of single nucleotide polymorphism (SNP) markers on equine chromosomes (ECA) 3 and 9 with body weight in Jeju horses. We used DNA samples and body weight data of 320 horses provided by the Livestock Promotion Agency, Jeju Special Self-Governing Province, and the Korean Racing Association, respectively. We genotyped all the experimental animals using nine SNP markers located on ECA 3 (BIEC2-808466, BIEC2-808543, BIEC2-808967, and BIEC2-809370) and ECA 9 (BIEC2-1105370, BIEC2-1105372, BIEC2-1105377, BIEC21105505, and BIEC2-1105840). These markers were selected due to their effects on body conformation traits in horses. The joint effect of the genotypes of the two SNP markers (BIEC2-808467 and BIEC2-1105377) regarding body weight were also evaluated. The estimated breeding value (EBV) of body weight was obtained as the dependent variable for association analyses using a linear mixed model. Significant associations were detected between SNP markers (BIEC2-808543, BIEC2-808967, BIEC2-809370, BIEC2-1105370, BIEC2-1105372, and BIEC2-1105377) and the body weight EBV. In addition, the joint genotype effect of the BIEC2-808467 and BIEC2-1105377 on the body weight EBV was significant. These results indicate that the SNP markers, which showed their significant effects on body conformation, can be used as genetic markers to improve the efficiency of the selective breeding program for the body weight traits in Jeju horses.

Induction of Growth Inhibition and Apoptosis in Human Cancer Cells by a Brown Algae Extract (갈조류 추출물에 의한 인간 암세포 성장 억제 및 세포 사멸 유도)

  • Choo, Kang-Sik;Lee, Hae-Nim;Shin, Seong-Ah;Kim, Hyeong-Jin;Park, Young-Seok;Kim, Sang-Ki;Jung, Ji-Youn
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.555-562
    • /
    • 2016
  • In this study, we investigated the effects of Undaria pinnatifida (UP), Petalonia binghamiae (PB) and Punctaria latifolia (PL) extracts on the inhibition of proliferation and apoptosis in human gastric and breast cancer cells. AGS, MDA-MB-231 and SK-BR-3 cells were treated with 0, 50, 100, and 200 μg/ml concentrations of the extracts to determine their anti-proliferative effects, using the MTT assay. The UP, PB and PL extracts inhibited proliferation of AGS, MDA-MB-231 and SK-BR-3 cells in a dose-dependent manner, and the PL extract was found to be the most effective. DAPI staining was also performed to determine changes in the cell nucleus. Further, the AGS, MDA-MB-231 and SK-BR-3 cells were treated with 0, 50, 100, and 200 μg/ml of only the PL extract. DAPI staining showed increased chromatin condensation, which is indicative of apoptosis, in the 200 μg/ml group. The expression of the Bax, Bcl-2, and PARP proteins in AGS, MDA-MB-231 and SK-BR-3 cells treated with the PL extract was also determined by western blot analysis. The expression of Bax (a pro-apoptotic protein) and cleaved-PARP was increased, whereas the expression of Bcl-2 (an anti-apoptotic protein) was decreased compared with the control. These findings indicate that the PL extract may have potential as an alternative anticancer drug and nutraceutical.

Improved Production Efficiencies of Various Adeno-Associated Virus (AAV) Serotypes and a Novel Universal AAV Titration Method (다양한 adeno-associated virus (AAV) 혈청형의 효율성 높은 생산법과 새로운 공통적 정량법 개발)

  • Cho, Young-Hwa;Choi, Ye-Jin;Yun, Jung-Hee;Kim, Nam-Hee;Choi, Mi-Ra;Choi, Young-Kook;Kim, Kyung-Hee;Lee, Young-Ill;Lee, Beom-Jun;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.703-712
    • /
    • 2012
  • Adeno-associated virus (AAV) has been considered to be a very safe and efficient gene delivery system. However, the major obstacles to therapeutic usage of AAV have been to achieve highly efficient and reproducible production processes, and also to develop a reliable quantifying method of various serotypes with a simple protocol. We compared the efficiency of the conventional production protocol of AAV2 and adenovirus (Ad) co-infection to that of a new method containing AAV2 infection followed by pHelper transfection. We tested HEK293 and 293T, and further examined the time-dependent changes of AAV2 production. The new method of AAV2 and pHelper DNA gave about ten times higher production efficiency than that of the conventional protocol. The highest production efficiency in 293T was achieved as $1.61{\times}10^5$ virus genomes (v.g.)/cell by the new method of 10 MOI of AAV2 infection and 5 days post-infection. This protocol of the highest efficiency was then applied to produce various AAV serotypes and showed the efficiencies higher than $10^5$ v.g./cell. Next, we designed the universal PCR primers of highly conserved regions for various AAV serotypes to develop a simple and reliable titration method. The universal primers could amplify all the tested AAV serotypes with similar sensitivities by ten molecular copies. Therefore, this pair of universal primers can be further utilized to detect AAV contaminants in therapeutic adenoviral vectors.

Anticancer and Antiviral Activity of Chlorine Dioxide by Its Induction of the Reactive Oxygen Species (이산화염소의 활성산소 생성 유도에 의한 항암 및 항바이러스 활성)

  • Kim, Yonggyun;Kumar, Sunil;Cheon, Wonsu;Eo, Hyunji;Kwon, Hyeok;Jeon, Yongho;Jung, Jinboo;Kim, Wook
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Chlorine dioxide has been used for a disinfectant by exhibiting antimicrobial activity and is also potent to kill insect pests infesting stored grains. This study aimed to extend the usefulness of chlorine dioxide with respect to anticancer and antiviral activities. Cytotoxicity of chlorine dioxide was assessed against five different human cancer cell lines. Chlorine dioxide exhibited significant cytotoxicity against two breast cancer cell lines (MCF-7, MDA-MB-231) and three colorectal cancer cell lines (LoVo, HCT-116, SW-480). This cytotoxicity appeared to be associated with the capacity of chlorine dioxide to induce the production of reactive oxygen species (ROS). Compared to control insect cell lines, the cancer cell lines possessed much higher levels of ROS. On the other hand, a treatment of an antioxidant, vitamin E, significantly reduced the cytotoxicity, suggesting that the cytotoxicity was induced by high levels of ROS production. Chlorine dioxide exhibited antiviral activity against different viruses. A baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), is a dsDNA insect virus and lost its viral activity to form polyhedral viral particles in response to chlorine dioxide. The antiviral activity against AcNPV was dependent on the incubation time with chlorine dioxide. Tobacco mosaic virus is a ssRNA plant virus and was reduced in its population after exposure to chlorine dioxide along with significant decrease of viral symptoms. These results indicate that chlorine dioxide possesses anticancer and antiviral activities probably due to its inducing activity of ROS production.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

EFFECTS OF $INTERFERON-\gamma$ ON COLLAGEN AND FIBRONECTIN SYNTHESIS IN PRIMARY CULTURED PERIODONTAL LIGAMENT CELLS ($Interferon-\gamma$가 치주인대 세포의 Collagen 및 Fibronectin의 합성과 Alkaline Phosphatase 활성에 미치는 영향)

  • Kim, Gwang-Seok;Sung, Jae-Hyun;Choi, Je-Yong;Ryou, Hyun-Mo
    • The korean journal of orthodontics
    • /
    • v.23 no.2 s.41
    • /
    • pp.229-248
    • /
    • 1993
  • [ $Interferon-\gamma$ ] has been suggested as a cytokine of connective tissue stabilizer. In addition, it has also been demonstrated that this cytokine inhibited bone remodeling activities of the bone derived cells. In order to illuminate the effects of this cytokine in orthodontic force induced bone remodeling, it was administered to primary cultured periodontal ligament cells which have been known to have some osteoblast like characteristics. $Interferon-\gamma$ slightly decreased $[^3H]thymidine$ incorporation rate without a significant change in the total cellular DNA content up to 1000 U/ml, which meant these doses were not cytotoxic to the cell. Total protein synthesis was not influenced by various concentration of interferon-y whether it was determined by the $[^3H]proline$ incorporation rate or by the Lowry smethod. The effect of $interferon-\gamma$ on the individual protein was, however, differential, ie, it increased $[^3H]proline$ incorporation into the noncollagenous protein marginally, while it decreased $[^3H]proline$ incorporation into the collagen, so that it caused dose-dependent suppression of the relative collagen synthesis. On the contrary, the fibronectin synthesis determined by the ELISA was increased by 1000 U/ml of $interferon-\gamma$. The differential effects of the interferon-y on the collagen and fibronectin synthesis exhibited not only their protein level but also the steady state mRNA level. $Interferon-\gamma$ decreased steady state level of ${\alpha}1(I)$ procollagen mRNA significantly, while showing no significant changes in the fibronectin mRNA level. In addition to this, it was also found that indomethacin did not affect on the $interferon-\gamma$ induced collagen decrease in this cell, which meant prostaglandins were not involed in the process of $interferon-\gamma$ induced collagen decrease. So it can be concluded that the incubation of periodontal ligament cells with 1000 U/ml of $interferon-\gamma$ for 24 hr showed differential effects on the type I collagen and fibronectin gene expression. The decrease in relative collagen synthesis in the protein level was related with decrease in the steady state level of mRNA, while the increase in the fibronectin synthesis in the protein level was not correlated with the mRNA level.

  • PDF

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.