DOI QR코드

DOI QR Code

The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis

  • Jiangxin Xu (Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine)) ;
  • Xiangliang Huang (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Yourong Zhou (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Zhifei Xu (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Xinjun Cai (Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine)) ;
  • Bo Yang (Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Qiaojun He (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Peihua Luo (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Hao Yan (Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University) ;
  • Jie Jin (Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine))
  • Received : 2023.11.28
  • Accepted : 2024.02.23
  • Published : 2024.09.01

Abstract

Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (No.82104315), Natural Science Foundation of Zhejiang Province of China (No. LQ22H310002), Special Pharmacy Project of Zhejiang Pharmaceutical Association (No.2023ZYY31), Yangtze River Delta Health Scientific Research Project of Zhejiang Province (No.2023CSJ-3-A002) and Youth Fund Project of Hangzhou Red Cross Hospital (No. HHQN2023007).

References

  1. Baird, L. and Yamamoto, M. (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol. 40, e00099-20.
  2. Chao, X., Wang, H., Jaeschke, H. and Ding, W. X. (2018) Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int. 38, 1363-1374.
  3. Chapman, E. J., Edwards, Z., Boland, J. W., Maddocks, M., Fettes, L., Malia, C., Mulvey, M. R. and Bennett, M. I. (2020) Practice review: evidence-based and effective management of pain in patients with advanced cancer. Palliat. Med. 34, 444-453.
  4. Chen, C. H., Hsieh, T. H., Lin, Y. C., Liu, Y. R., Liou, J. P. and Yen, Y. (2019) Targeting autophagy by MPT0L145, a highly potent PIK3C3 inhibitor, provides synergistic interaction to targeted or chemotherapeutic agents in cancer cells. Cancers (Basel) 11, 1345.
  5. Chen, J., Gu, R., Wang, Q., Dassarath, M., Yin, Z., Yang, K. and Wu, G. (2012) Gefitinib-induced hepatotoxicity in patients treated for non-small cell lung cancer. Onkologie 35, 509-513.
  6. Chen, S., Tian, Q., Shang, C., Yang, L., Wei, N., Shang, G., Ji, Y., Kou, H., Lu, S. and Liu, H. (2020) Synergistic utilization of Necrostatin-1 and Z-VAD-FMK efficiently promotes the survival of compression-induced nucleus pulposus cells via alleviating mitochondrial dysfunction. Biomed Res. Int. 2020, 6976317.
  7. Done, A. J. and Traustadottir, T. (2016) Nrf2 mediates redox adaptations to exercise. Redox Biol. 10, 191-199.
  8. Du, Z., Ma, Z., Lai, S., Ding, Q., Hu, Z., Yang, W., Qian, Q., Zhu, L., Dou, X. and Li, S. (2022) Atractylenolide I ameliorates acetaminophen-induced acute liver injury via the TLR4/MAPKs/NF-κB signaling pathways. Front. Pharmacol. 13, 797499.
  9. Garcia-Roman, R. and Frances, R. (2020) Acetaminophen-induced liver damage in hepatic steatosis. Clin. Pharmacol. Ther. 107, 1068-1081.
  10. Guo, L., Gong, H., Tang, T. L., Zhang, B. K., Zhang, L. Y. and Yan, M. (2021) Crizotinib and sunitinib induce hepatotoxicity and mitochondrial apoptosis in L02 cells via ROS and Nrf2 signaling pathway. Front. Pharmacol. 12, 620934.
  11. Herndon, C. M. and Dankenbring, D. M. (2014) Patient perception and knowledge of acetaminophen in a large family medicine service. J. Pain Palliat. Care Pharmacother. 28, 109-116.
  12. Hida, T., Ogawa, S., Park, J. C., Park, J. Y., Shimizu, J., Horio, Y. and Yoshida, K. (2009) Gefitinib for the treatment of non-small-cell lung cancer. Expert Rev. Anticancer Ther. 9, 17-35.
  13. Jaeschke, H. (2015) Acetaminophen: dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig. Dis. 33, 464-471.
  14. Jayasuriya, R., Dhamodharan, U., Ali, D., Ganesan, K., Xu, B. and Ramkumar, K. M. (2021) Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: possible therapeutic strategy to combat liver disease. Phytomedicine 92, 153755.
  15. Jin, J., Qian, F., Zheng, D., He, W., Gong, J. and He, Q. (2021) Mesenchymal stem cells attenuate renal fibrosis via exosomes-mediated delivery of microRNA let-7i-5p antagomir. Int. J. Nanomedicine 16, 3565-3578.
  16. Karbownik, A., Sobanska, K., Grabowski, T., Stanislawiak-Rudowicz, J., Wolc, A., Grzeskowiak, E. and Szalek, E. (2020) In vivo assessment of the drug interaction between sorafenib and paracetamol in rats. Cancer Chemother. Pharmacol. 85, 1039-1048.
  17. Karbownik, A., Szalek, E., Sobanska, K., Grabowski, T., Klupczynska, A., Plewa, S., Wolc, A., Magiera, M., Porazka, J., Kokot, Z. J. and Grzeskowiak, E. (2018) The concomitant use of lapatinib and paracetamol - the risk of interaction. Invest. New Drugs 36, 819-827.
  18. Karbownik, A., Szalek, E., Sobanska, K., Grabowski, T., Wolc, A. and Grzeskowiak, E. (2017) Pharmacokinetic drug-drug interaction between erlotinib and paracetamol: a potential risk for clinical practice. Eur. J. Pharm. Sci. 102, 55-62.
  19. Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223.
  20. Larson, A. M. (2007) Acetaminophen hepatotoxicity. Clin. Liver Dis. 11, 525-548, vi.
  21. Lee, J. S., Oh, Y., Lee, J. S. and Kim, H. S. (2022) Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. Sci. Total Environ. 864, 160925.
  22. Liao, J., Yang, F., Tang, Z., Yu, W., Han, Q., Hu, L., Li, Y., Guo, J., Pan, J., Ma, F., Ma, X. and Lin, Y. (2019) Inhibition of Caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. Ecotoxicol. Environ. Saf. 174, 110-119.
  23. Liu, Q., Lei, Z., Gu, C., Guo, J., Yu, H., Fatima, Z., Zhou, K., Shabbir, M. A. B., Maan, M. K., Wu, Q., Xie, S., Wang, X. and Yuan, Z. (2019) Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food Chem. Toxicol. 127, 270-279.
  24. Lu, C., Zhu, F., Cho, Y. Y., Tang, F., Zykova, T., Ma, W. Y., Bode, A. M. and Dong, Z. (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol. Cell 23, 121-132.
  25. Luo, P., Yan, H., Du, J., Chen, X., Shao, J., Zhang, Y., Xu, Z., Jin, Y., Lin, N., Yang, B. and He, Q. (2021) PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 17, 3221-3237.
  26. Ma, Q. (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53, 401-426.
  27. Mah, L. J., El-Osta, A. and Karagiannis, T. C. (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679-686.
  28. Mitsudomi, T., Morita, S., Yatabe, Y., Negoro, S., Okamoto, I., Tsurutani, J., Seto, T., Satouchi, M., Tada, H., Hirashima, T., Asami, K., Katakami, N., Takada, M., Yoshioka, H., Shibata, K., Kudoh, S., Shimizu, E., Saito, H., Toyooka, S., Nakagawa, K. and Fukuoka, M. (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121-128.
  29. Miyauchi, E., Morita, S., Nakamura, A., Hosomi, Y., Watanabe, K., Ikeda, S., Seike, M., Fujita, Y., Minato, K., Ko, R., Harada, T., Hagiwara, K., Kobayashi, K., Nukiwa, T., Inoue, A. and North-East Japan Study Group (2022) Updated analysis of NEJ009: gefitinibalone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated EGFR. J Clin Oncol. 40, 3587-3592.
  30. Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., Nishiwaki, Y., Ohe, Y., Yang, J. J., Chewaskulyong, B., Jiang, H., Duffield, E. L., Watkins, C. L., Armour, A. A. and Fukuoka, M. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947-957.
  31. Motahari, P., Sadeghizadeh, M., Behmanesh, M., Sabri, S. and Zolghadr, F. (2015) Generation of stable ARE- driven reporter system for monitoring oxidative stress. Daru 23, 38.
  32. Ni, H. M., McGill, M. R., Chao, X., Du, K., Williams, J. A., Xie, Y., Jaeschke, H. and Ding, W. X. (2016) Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J. Hepatol. 65, 354-362.
  33. Nigade, P. B., Gundu, J., Sreedhara Pai, K. and Nemmani, K. V. S. (2017) Prediction of tissue-to-plasma ratios of basic compounds in mice. Eur. J. Drug Metab. Pharmacokinet. 42, 835-847.
  34. Olive, P. L. and Banath, J. P. (2006) The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23-29.
  35. Park, C., Cha, H. J., Kim, M. Y., Bang, E., Moon, S. K., Yun, S. J., Kim, W. J., Noh, J. S., Kim, G. Y., Cho, S., Lee, H. and Choi, Y. H. (2022) Phloroglucinol attenuates DNA damage and apoptosis induced by oxidative stress in human retinal pigment epithelium ARPE-19 cells by blocking the production of mitochondrial ROS. Antioxidants (Basel) 11, 2353.
  36. Peacock, W. F., Breitmeyer, J. B., Pan, C., Smith, W. B. and Royal, M. A. (2011) A randomized study of the efficacy and safety of intravenous acetaminophen compared to oral acetaminophen for the treatment of fever. Acad Emerg Med. 18, 360-366.
  37. Polson, J. and Lee, W. M. (2005) AASLD position paper: the management of acute liver failure. Hepatology 41, 1179-1197.
  38. Ramachandran, A. and Jaeschke, H. (2018) Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene Expr. 18, 19-30.
  39. Ramachandran, A. and Jaeschke, H. (2019) Acetaminophen hepatotoxicity. Semin. Liver Dis. 39, 221-234.
  40. Ramalingam, S. S., Vansteenkiste, J., Planchard, D., Cho, B. C., Gray, J. E., Ohe, Y., Zhou, C., Reungwetwattana, T., Cheng, Y., Chewaskulyong, B., Shah, R., Cobo, M., Lee, K. H., Cheema, P., Tiseo, M., John, T., Lin, M. C., Imamura, F., Kurata, T., Todd, A., Hodge, R., Saggese, M., Rukazenkov, Y. and Soria, J. C. (2020) Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41-50.
  41. Rinott, E., Kozer, E., Shapira, Y., Bar-Haim, A. and Youngster, I. (2020) Ibuprofen use and clinical outcomes in COVID-19 patients. Clin. Microbiol. Infect. 26, 1259.e5-1259.e7.
  42. Rubinstein, L. V., Shoemaker, R. H., Paull, K. D., Simon, R. M., Tosini, S., Skehan, P., Scudiero, D. A., Monks, A. and Boyd, M. R. (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 82, 1113-1118.
  43. Shah, R. R., Morganroth, J. and Shah, D. R. (2013) Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 36, 491-503.
  44. Shi, T. and Dansen, T. B. (2020) Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal. 33, 839-859.
  45. Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R. and Tang, D. (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173-184.
  46. Tan, S., Liu, X., Chen, L., Wu, X., Tao, L., Pan, X., Tan, S., Liu, H., Jiang, J. and Wu, B. (2021) Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 12, 474.
  47. Thia, T. J., Tan, H. H., Chuah, T. H., Chow, W. C. and Lui, H. F. (2008) Imatinib mesylate-related fatal acute hepatic failure in a patient with chronic myeloid leukaemia and chronic hepatitis B infection. Singapore Med. J. 49, e86-e89.
  48. Wang, J., Wu, Y., Dong, M., He, X., Wang, Z., Li, J. and Wang, Y. (2016) Observation of hepatotoxicity during long-term gefitinib administration in patients with non-small-cell lung cancer. Anticancer Drugs 27, 245-250.
  49. Wang, X., Zhang, J., Liu, Y., Lu, C., Hou, K., Huang, Y., Juhasz, A., Zhu, L., Du, Z. and Li, B. (2022) Effect of florasulam on oxidative damage and apoptosis in larvae and adult zebrafish (Danio rerio). J. Hazard. Mater. 446, 130682.
  50. Xie, Y., McGill, M. R., Dorko, K., Kumer, S. C., Schmitt, T. M., Forster, J. and Jaeschke, H. (2014) Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol. 279, 266-274.
  51. Yan, H., Du, J., Chen, X., Yang, B., He, Q., Yang, X. and Luo, P. (2019) ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol. Appl. Pharmacol. 383, 114768.
  52. Yan, M., Huo, Y., Yin, S. and Hu, H. (2018) Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 17, 274-283.
  53. Yousefifard, M., Zali, A., Zarghi, A., Madani Neishaboori, A., Hosseini, M. and Safari, S. (2020) Non-steroidal anti-inflammatory drugs in management of COVID-19; a systematic review on current evidence. Int. J. Clin. Pract. 74, e13557.
  54. Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789.
  55. Zhang, X., Li, L. X., Ding, H., Torres, V. E., Yu, C. and Li, X. (2021a) Ferroptosis promotes cyst growth in autosomal dominant polycystic kidney disease mouse models. J. Am. Soc. Nephrol. 32, 2759-2776.
  56. Zhang, Y., Cai, Y., Zhang, S. R., Li, C. Y., Jiang, L. L., Wei, P. and He, M. F. (2021b) Mechanism of hepatotoxicity of first-line tyrosine kinase inhibitors: gefitinib and afatinib. Toxicol Lett. 343, 1-10.
  57. Zhao, J., Chen, M., Zhong, W., Zhang, L., Li, L., Xiao, Y., Nie, L., Hu, P. and Wang, M. (2013) Cerebrospinal fluid concentrations of gefitinib in patients with lung adenocarcinoma. Clin. Lung Cancer 14, 188-193.
  58. Zhao, M., Hartke, C., Jimeno, A., Li, J., He, P., Zabelina, Y., Hidalgo, M. and Baker, S. D. (2005) Specific method for determination of gefitinib in human plasma, mouse plasma and tissues using high performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 819, 73-80.