References
- Akar, A., Arca, E., Erbil, H., Akay, C., Sayal, A. and Gur, A. R. (2002) Antioxidant enzymes and lipid peroxidation in the scalp of patients with alopecia areata. J. Dermatol. Sci. 29, 85-90. https://doi.org/10.1016/S0923-1811(02)00015-4
- Bae, Y. S., Oh, H., Rhee, S. G. and Do Yoo, Y. (2011) Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
- Bahta, A. W., Farjo, N., Farjo, B. and Philpott, M. P. (2008) Premature senescence of balding dermal papilla cells in vitro is associated with p16INK4a expression. J. Invest. Dermatol. 128, 1088-1094. https://doi.org/10.1038/sj.jid.5701147
- Bakan, A., Meireles, L. M. and Bahar, I. (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics (Oxford, England) 27, 1575-1577. https://doi.org/10.1093/bioinformatics/btr168
- Bakry, O. A., Elshazly, R. M. A., Shoeib, M. A. M. and Gooda, A. (2014) Oxidative stress in alopecia areata: a case-control study. Am. J. Clin. Dermatol. 15, 57-64. https://doi.org/10.1007/s40257-013-0036-6
- Chi, W., Wu, E. and Morgan, B. A. (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676-1683. https://doi.org/10.1242/dev.090662
- Choi, M., Choi, S. J., Jang, S., Choi, H. I., Kang, B. M., Hwang, S. T. and Kwon, O. (2019) Shikimic acid, a mannose bioisostere, promotes hair growth with the induction of anagen hair cycle. Sci. Rep. 9, 17008.
- Choi, M., Choi, Y. M., Choi, S. Y., An, I. S., Bae, S., An, S. and Jung, J. H. (2020) Glucose metabolism regulates expression of hair-inductive genes of dermal papilla spheres via histone acetylation. Sci. Rep. 10, 4887.
- Chuong, C. M. (1998) Molecular Basis of Epithelial Appendage Morphogenesis (Vol. 1). Landes Bioscience.
- Cotsarelis, G., Sun, T. T. and Lavker, R. M. (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337. https://doi.org/10.1016/0092-8674(90)90696-C
- Driskell, R. R., Clavel, C., Rendl, M. and Watt, F. M. (2011) Hair follicle dermal papilla cells at a glance. J. Cell Sci. 124, 1179-1182. https://doi.org/10.1242/jcs.082446
- Elliott, K., Messenger, A. G. and Stephenson, T. J. (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J. Invest. Dermatol. 113, 873-877. https://doi.org/10.1046/j.1523-1747.1999.00797.x
- Ellis, R. A. and Montagna, W. (1958) Histology and cytochemistry of human skin. XV. Sites of phosphorylase and amylo-1, 6-glucosidase activity. J. Histochem. Cytochem. 6, 201-207. https://doi.org/10.1177/6.3.201
- Figlak, K., Williams, G., Bertolini, M., Paus, R. and Philpott, M. P. (2021) Human hair follicles operate an internal Cori cycle and modulate their growth via glycogen phosphorylase. Sci. Rep. 11, 20761.
- Handjiski, B. K., Eichmuller, S., Hofmann, U., Czarnetzki, B. M. and Paus, R. (1994) Alkaline phosphatase activity and localization during the murine hair cycle. Br. J. Dermatol. 131, 303-310. https://doi.org/10.1111/j.1365-2133.1994.tb08515.x
- Hardy, M. H. (1952) The histochemistry of hair follicles in the mouse. Am. J. Anat. 90, 285-337. https://doi.org/10.1002/aja.1000900302
- Hardy, M. H. (1992) The secret life of the hair follicle. Trends Genet. 8, 55-61. https://doi.org/10.1016/0168-9525(92)90350-D
- Huang, W. Y., Huang, Y. C., Huang, K. S., Chan, C. C., Chiu, H. Y., Tsai, R. Y. Chan, J. Y. and Lin, S. J. (2017) Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. J. Dermatol. Sci. 86, 114-122. https://doi.org/10.1016/j.jdermsci.2017.01.003
- Iida, M., Ihara, S. and Matsuzaki, T. (2007) Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev. Growth Differ. 49, 185-195. https://doi.org/10.1111/j.1440-169X.2007.00907.x
- Koca, R., Armutcu, F., Altinyazar, H. C. and Gurel, A. (2005) Evaluation of lipid peroxidation, oxidant/antioxidant status, and serum nitric oxide levels in alopecia areata. Med. Sci. Monit. 11, CR296-CR299.
- Kowalik, M. A., Columbano, A. and Perra, A. (2017) Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front. Oncol. 7, 87.
- Le Thi, P., Lee, Y., Tran, D. L., Thi, T. T. H., Kang, J. I., Park, K. M. and Park, K. D. (2020) In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater. 103, 142-152. https://doi.org/10.1016/j.actbio.2019.12.009
- Luanpitpong, S., Nimmannit, U., Chanvorachote, P., Leonard, S. S., Pongrakhananon, V., Wang, L. and Rojanasakul, Y. (2011) Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism. Apoptosis 16, 769-782. https://doi.org/10.1007/s10495-011-0609-x
- McElwee, K. J., Kissling, S., Wenzel, E., Huth, A. and Hoffmann, R. (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J. Invest. Dermatol. 121, 1267-1275. https://doi.org/10.1111/j.1523-1747.2003.12568.x
- McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J. and Koes, D. R. (2021) GNINA 1.0: molecular docking with deep learning. J. Cheminform. 13, 43.
- Montagna, W., Chase, H. B. and Hamilton, J. B. (1951) The distribution of glycogen and lipids in human skin. J. Invest. Dermatol. 17, 147-157. https://doi.org/10.1038/jid.1951.75
- Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I. A., Stenn, K. S. and Paus, R. (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3-15. https://doi.org/10.1046/j.0022-202x.2001.01377.x
- O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011) Open Babel: an open chemical toolbox. J. Cheminform. 3, 33.
- Oikonomakos, N. G., Skamnaki, V. T., Tsitsanou, K. E., Gavalas, N. G. and Johnson, L. N. (2000) A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 8, 575-584. https://doi.org/10.1016/S0969-2126(00)00144-1
- Onda, K., Suzuki, T., Shiraki, R., Yonetoku, Y., Negoro, K., Momose, K., Katayama, N., Orita, M., Yamaguchi, T., Ohta, M. and Tsukamoto, S. (2008) Synthesis of 5-chloro-N-aryl-1H-indole-2-carboxamide derivatives as inhibitors of human liver glycogen phosphorylase a. Bioorg. Med. Chem. 16, 5452-5464. https://doi.org/10.1016/j.bmc.2008.04.010
- Paus, R. and Cotsarelis, G. (1999) The biology of hair follicles. N. Engl. J. Med. 341, 491-497. https://doi.org/10.1056/NEJM199908123410706
- Rajendran, R. L., Gangadaran, P., Kwack, M. H., Oh, J. M., Hong, C. M., Sung, Y. K., Lee, J. and Ahn, B. C. (2022) Application of extracellular vesicles from mesenchymal stem cells promotes hair growth by regulating human dermal cells and follicles. World J. Stem Cells 14, 527-538. https://doi.org/10.4252/wjsc.v14.i7.527
- Rendl, M., Polak, L. and Fuchs, E. (2008) BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543-557. https://doi.org/10.1101/gad.1614408
- Rocha, S., Lucas, M., Araujo, A. N., Corvo, M. L., Fernandes, E. and Freitas, M. (2021) Optimization and validation of an in vitro standardized glycogen phosphorylase activity assay. Molecules 26, 4635.
- Shin, H., Yoo, H. G., Inui, S., Itami, S., Kim, I. G., Cho, A. R., Lee, D. H., Park, W. S., Kwon, O., Cho, K. H. and Won, C. H. (2013) Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells. BMB Rep. 46, 460-464. https://doi.org/10.5483/BMBRep.2013.46.9.228
- Shipman, M., Chase, H. B. and Montagna, W. (1955) Glycogen in skin of the mouse during cycles of hair growth. Proc. Soc. Exp. Biol. Med. 88, 449-451. https://doi.org/10.3181/00379727-88-21615
- Trueb, R. M. (2009) Oxidative stress in ageing of hair. Int. J. Trichology 1, 6-14. https://doi.org/10.4103/0974-7753.51923
- Upton, J. H., Hannen, R. F., Bahta, A. W., Farjo, N., Farjo, B. and Philpott, M. P. (2015) Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia. J. Invest. Dermatol. 135, 1244-1252. https://doi.org/10.1038/jid.2015.28
- Williams, R., Philpott, M. P. and Kealey, T. (1993) Metabolism of freshly isolated human hair follicles capable of hair elongation: a glutaminolytic, aerobic glycolytic tissue. J. Invest. Dermatol. 100, 834-840. https://doi.org/10.1111/1523-1747.ep12476744
- Woo, W. M., Zhen, H. H. and Oro, A. E. (2012) Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev. 26, 1235-1246. https://doi.org/10.1101/gad.187401.112
- Yano, K., Brown, L. F. and Detmar, M. (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409-417. https://doi.org/10.1172/JCI11317
- Zhao, J., Li, H., Zhou, R., Ma, G., Dekker, J. D., Tucker, H. O., Yao, Z. and Guo, X. (2015) Foxp1 regulates the proliferation of hair follicle stem cells in response to oxidative stress during hair cycling. PLoS One 10, e0131674.