• 제목/요약/키워드: DNA-binding

검색결과 1,275건 처리시간 0.025초

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • 한국자기공명학회논문지
    • /
    • 제22권1호
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Expression of Gal4-VP16 and Gal4-DNA binding domain under the control of the T lymphocyte-specific lck proximal promoter in transgenic mice

  • Ryu, Chun-Jeih;Whitehurst, Charles E.;Chen, Jianzhu
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.575-580
    • /
    • 2008
  • Thymocyte-specific transcriptional regulatory systems can be used to better understand the relationship between transcription and V(D)J recombination during early T cell development. In this study, we generated transgenic mice expressing the transactivator Gal4-VP16 or the Gal4 DNA binding domain (Gal4-DBD) under the control of the lck proximal promoter, which is only active in immature thymocytes. From these studies Gal4-VP16 and Gal4-DBD expression was shown to significantly alter thymic cellularity and differentiation without significantly changing the $CD3^+$ thymocyte distribution. Furthermore, the presence of Gal4-VP16 or Gal4-DBD in the transgenic thymocytes retarded the mobility of the Gal4 DNA binding motif as determined by a gel mobility shift assay, suggesting that the developmental alteration did not affect the functional property of the transgenic proteins. These results indicated that lck promoter-driven Gal4-VP16 or Gal4-DBD expression did not affect $CD3^+$ mature thymocytes, thus this system can be applied to study transcriptional regulation of transresponder genes in bigenic mouse model thymocytes.

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

Anti-DNA Autoantibodies from on MRL/Ipr Mouse

  • Park, Jeong-Soo;Kim, Young-Tai;Lee, Chan-Hee;Youn, Jung-Koo;Jang, Young-Ju
    • Animal cells and systems
    • /
    • 제2권3호
    • /
    • pp.371-375
    • /
    • 1998
  • Twenty-one monoclonal anti-DNA autoantilndies were produced by fusing spleen cells from an autoimmune MRL/lpr mouse with SP2/0 myeloma cells. Hybridomas generated by the fusions were chosen for cloning on the basis of DNA binding by supernatant antibody. Each monoclonal antibody was purified to homogeneity and analyzed for the heavy and light chain isotypes and the binding specificity for single-stranded DNA, double-stranded DNA, and RNA. Sequence specificities and isoelectric points of the antibodies were also examined. All of the antibodies were lgG and tended to bind to both single-stranded and double-stranded DNA with a preference for the double-stranded form. Some of them also bound to RNA. Isoelectric points of the antibodies were shown to be high. The antibodies described in this report have characteristics of pathogenic anti-DNA antibodies.

  • PDF

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

Analysis of partial cDNA sequence from Theileria sergenti

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deog;Lee, Joo-mook
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.797-805
    • /
    • 1999
  • T sergenti cDNA library were constructed to get a more broad information about the structural, functional or antigenic properties of the proteins, and analyzes for their partial cDNA sequences and expression sequences tags(ESTg). The mRNA were purified from T sergenti isolates to identify the information of antigen gene, then first and second strand cDNA was synthesized. EcoR I adaptor ligation and Xho I enzyme restriction were used to the synthesized cDNA, and ligated into a Uni-ZAP XR vector. T sergenti cDNA library was constructed with packaging and amplification in vitro. Antibody screening was performed with constructed T sergenti cDNA library using antisera against T sergenti. Among those clones, eight phagemids were rescued from the recombinant in vivo excision with f1 helper phage. Using the analysis of endonuclease restriction and PCR, the recombinant cDNA were proved having a 0.5-3.0kb of inserts. The eight of partial cDNA clones' sequences were obtained and examined for their homology using BLASTN and BLASTX. The eight of sequenced clones were classified into three groups according to the basis of database searches. A total 3,045bp of partial cDNA sequence were determined from six clones. The putatively identified clones contain a cytochrome c gene, a heat shock protein gene, a cyclophilin gene, and a ribosomal protein gene. The unidentified clones have a homology to ATP-binding protein(mtrA) gene of S argillaceus, DNA-binding protein(DBP) gene of Pseudorabies virus 85kDa merozoite protein gene of B bovis, mRNA spm1 protein of T annulata and glycine-rich RNA-binding protein mRNA of O sativa etc.

  • PDF

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

DNA Binding Mode of the Isoquinoline Alkaloid Berberine with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2

  • Park, Hye-Seo;Kim, Eun-Hee;Sung, Yoon-Hui;Kang, Mi-Ran;Chung, In-Kwon;Cheong, Chae-Joon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.539-544
    • /
    • 2004
  • The ability of protoberberine alkaloids, berberine and berberrubine, to act as topoisomerase II poisons is linked to the anti-cancer activity. Minor alterations in structure have a significant effect on their relative activity. Berberine, which has methoxy group at the 19-position, is significantly less potent than berberrubine. Several observations support non-specific binding to HP14 by the berberine: (i) nonspecific upfield changes in $^1H$ chemical shift for protons of the berberine; (ii) the broadening of imino protons of HP14 upon binding of the berberine; (iii) very small increases in duplex melting temperature in the presence of the berberine. Our results reveal that substitution of a hydroxyl group to a methoxy group on the 19-position, thereby converting the berberrubine to the berberine is associated with a non-specific DNA binding affinity and a reduced topoisomerase II poisoning. The presence of a bulky 19-methoxy substituent decreases intercalating properties of berberine and makes it inactive as topoisomerase II poison.

황백(黃柏)의 berberine이 DNA의 기능조절에 미치는 영향에 관한 형광이방성 연구 (Fluorescence Anisotropy Study on the Effect of Phellodendri Cortex's Berberine on Regulation of the Function of DNA)

  • 이성경;한효상;허성호
    • 대한본초학회지
    • /
    • 제33권5호
    • /
    • pp.105-110
    • /
    • 2018
  • Objectives : We tried to observe the fluorescence anisotropy and intensity of ethidium ion in the intercalating binding interaction between DNA and ethidium ions in the presence of berberine, and then tried to explain the effect of berberine on the intercalating interaction of ethidium ion with DNA. Methods : DNA(calf thymus DNA), berberine and ethidium bromide(EtBr) were purchased from Sigma-Aldrich Co. Proper amount of each compound was dissolved in 20 mM sodium phosphate buffer(pH 7.0) containing 100 mM of NaCl to prepare stock solutions. Collections of the fluorescence anisotropy and intensity data were performed on JASCO FP-8300 spectrofluorometer equipped with a polarizer and a Peltier temperature controller. The excitation of ethidium ion was done at 550 nm and the emission data were collected at 600 nm. For Stern-Volmer plot, the fluorescence data were collected at $18^{\circ}C$ and $30^{\circ}C$. Results : According to the results of this research, the weak competitive binding pattern between ethidium ion and berberine appeared in binding with DNA at low ratio of DNA to ethidium ion. But at high ratio of DNA to ethidium ion, this weak competition disappeared. Instead, berberine might bind to DNA by intercalating way. In other words, berberine could de-intercalate ethidium ion from DNA at low concentration of DNA relative to ethidium ion, but could not at high concentration of DNA relative to ethidium ion. In addition, the mechanism of fluorescence quenching of ethidium ion could also proceed differently, depending on the ratio of the amount of DNA to that of ethidium ion. Conclusions : The effect of berberine on the DNA-ethidium ion intercalating interaction could work differently, depending on the relative ratio of the amount of DNA to that of ethidium ion. This study also showed that fluorescence anisotropy analysis is very useful method to obtain detailed information for investigation of the complex binding interactions. In order to fully understand the mechanism of action of the pharmacological effect by berberine, studies on the effect of berberine on the action of proteins such as various enzymes closely related to berberine-induced medicinal effects should be continued.