DOI QR코드

DOI QR Code

Expression of Gal4-VP16 and Gal4-DNA binding domain under the control of the T lymphocyte-specific lck proximal promoter in transgenic mice

  • Ryu, Chun-Jeih (Institute of Bioscience, Department of Bioscience and Biotechnology, Sejong University) ;
  • Whitehurst, Charles E. (Center for Cancer Research and Department of Biology, Massachusetts Institutes of Technology) ;
  • Chen, Jianzhu (Center for Cancer Research and Department of Biology, Massachusetts Institutes of Technology)
  • Published : 2008.08.31

Abstract

Thymocyte-specific transcriptional regulatory systems can be used to better understand the relationship between transcription and V(D)J recombination during early T cell development. In this study, we generated transgenic mice expressing the transactivator Gal4-VP16 or the Gal4 DNA binding domain (Gal4-DBD) under the control of the lck proximal promoter, which is only active in immature thymocytes. From these studies Gal4-VP16 and Gal4-DBD expression was shown to significantly alter thymic cellularity and differentiation without significantly changing the $CD3^+$ thymocyte distribution. Furthermore, the presence of Gal4-VP16 or Gal4-DBD in the transgenic thymocytes retarded the mobility of the Gal4 DNA binding motif as determined by a gel mobility shift assay, suggesting that the developmental alteration did not affect the functional property of the transgenic proteins. These results indicated that lck promoter-driven Gal4-VP16 or Gal4-DBD expression did not affect $CD3^+$ mature thymocytes, thus this system can be applied to study transcriptional regulation of transresponder genes in bigenic mouse model thymocytes.

Keywords

References

  1. Ornitz, D. M., Moreadith, R. W. and Leder, P. (1991) Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc. Natl. Acad. Sci. U.S.A. 88, 698-702. https://doi.org/10.1073/pnas.88.3.698
  2. Laughon, A. and Gesteland, R. F. (1984) Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol. Cell Biol. 4, 260-267. https://doi.org/10.1128/MCB.4.2.260
  3. Ptashne, M. (1986) Gene regulation by proteins acting nearby and at a distance. Nature. 322, 697-701. https://doi.org/10.1038/322697a0
  4. Gardner, D. P., Byrne, G. W., Ruddle, F. H. and Kappen, C. (1996) Spatial and temporal regulation of a lacZ reporter transgene in a binary transgenic mouse system. Transgenic Res. 5, 37-48. https://doi.org/10.1007/BF01979920
  5. Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature. 335, 563-564. https://doi.org/10.1038/335563a0
  6. Yueh, Y. G., Yaworsky, P. J. and Kappen, C. (2000) Herpes simplex virus transcriptional activator VP16 is detrimental to preimplantation development in mice. Mol. Reprod. Dev. 55, 37-46. https://doi.org/10.1002/(SICI)1098-2795(200001)55:1<37::AID-MRD6>3.0.CO;2-N
  7. Voronova, A. F., Adler, H. T. and Sefton, B. M. (1987) Two lck transcripts containing different 5' untranslated regions are present in T cells. Mol. Cell Biol. 7, 4407-4413. https://doi.org/10.1128/MCB.7.12.4407
  8. Allen, J. M., Forbush, K. A. and Perlmutter, R. M. (1992) Functional dissection of the lck proximal promoter. Mol. Cell Biol. 12, 2758-2768. https://doi.org/10.1128/MCB.12.6.2758
  9. Chaffin, K. E., Beals, C. R., Wilkie, T. M., Forbush, K. A., Simon, M. I. and Perlmutter, R. M. (1990) Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J. 9, 3821-3829.
  10. Garvin, A. M., Abraham, K. M., Forbush, K. A., Farr, A. G., Davison, B. L. and Perlmutter, R. M. (1990) Disruption of thymocyte development and lymphomagenesis induced by SV40 T-antigen. Int. Immunol. 2, 173-180. https://doi.org/10.1093/intimm/2.2.173
  11. Shimizu, C., Kawamoto, H., Yamashita, M., Kimura, M., Kondou, E., Kaneko, Y., Okada, S., Tokuhisa, T., Yokoyama, M., Taniguchi, M., Katsura, Y. and Nakayama, T. (2001) Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int. Immunol. 13, 105-117. https://doi.org/10.1093/intimm/13.1.105
  12. Hesslein, D. G. and Schatz, D. G. (2001) Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169-232. https://doi.org/10.1016/S0065-2776(01)78004-2
  13. Sikes, M. L., Meade, A., Tripathi, R., Krangel, M. S. and Oltz, E. M. (2002) Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. U.S.A. 99, 12309-12314. https://doi.org/10.1073/pnas.182166699
  14. Abarrategui, I. and Krangel, M. S. (2006) Regulation of T cell receptor-alpha gene recombination by transcription. Nat. Immunol. 7, 1109-1115. https://doi.org/10.1038/ni1379
  15. Haines, B. B., Ryu, C. J., Chang, S., Protopopov, A., Luch, A., Kang, Y. H., Draganov, D. D., Fragoso, M. F., Paik, S. G., Hong, H. J., DePinho, R. A. and Chen, J. (2006) Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations. Cancer Cell. 9, 109-120. https://doi.org/10.1016/j.ccr.2006.01.004
  16. Ryu, C. J., Haines, B. B., Draganov, D. D., Kang, Y. H., Whitehurst, C. E., Schmidt, T., Hong, H. J. and Chen, J. (2003) The T cell receptor beta enhancer promotes access and pairing of Dbeta and Jbeta gene segments during V(D)J recombination. Proc. Natl. Acad. Sci. U.S.A. 100, 13465-13470. https://doi.org/10.1073/pnas.2235807100
  17. Ryu, C. J., Haines, B. B., Lee, H. R., Kang, Y. H., Draganov, D. D., Lee, M., Whitehurst, C. E., Hong, H. J. and Chen, J. (2004) The T-cell receptor beta variable gene promoter is required for efficient V beta rearrangement but not allelic exclusion. Mol. Cell Biol. 24, 7015-7023. https://doi.org/10.1128/MCB.24.16.7015-7023.2004
  18. Brinster, R. L., Allen, J. M., Behringer, R. R., Gelinas, R. E. and Palmiter, R. D. (1988) Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 85, 836-840. https://doi.org/10.1073/pnas.85.3.836
  19. Sadowski, I., Bell, B., Broad, P. and Hollis, M. (1992) GAL4 fusion vectors for expression in yeast or mammalian cells. Gene. 118, 137-141. https://doi.org/10.1016/0378-1119(92)90261-M
  20. Doty, R. T., Xia, D., Nguyen, S. P., Hathaway, T. R. and Willerford, D. M. (1999) Promoter element for transcription of unrearranged T-cell receptor beta-chain gene in pro-T cells. Blood. 93, 3017-3025.
  21. Moosavi, M. A., Yazdanparast, R. and Lotfi, A. (2006) 3- Hydrogenkwadaphnin induces monocytic differentiation and enhances retinoic acid-mediated granulocytic differentiation in NB4 cell line. J. Biochem. Mol. Biol. 39, 722- 729. https://doi.org/10.5483/BMBRep.2006.39.6.722
  22. Prywes, R. and Roeder, R. G. (1986) Inducible binding of a factor to the c-fos enhancer. Cell. 47, 777-784. https://doi.org/10.1016/0092-8674(86)90520-9
  23. Ryu, C. J., Cho, D. Y., Gripon, P., Kim, H. S., Guguen- Guillouzo, C. and Hong, H. J. (2000) An 80-kilodalton protein that binds to the pre-S1 domain of hepatitis B virus. J. Virol. 74, 110-116. https://doi.org/10.1128/JVI.74.1.110-116.2000
  24. Xu, H. E. and Johnston, S. A. (1994) Yeast bleomycin hydrolase is a DNA-binding cysteine protease. Identification, purification, biochemical characterization. J. Biol. Chem. 269, 21177-21183.
  25. Johansen, F. E. and Prywes, R. (1993) Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs. Mol. Cell Biol. 13, 4640-4647. https://doi.org/10.1128/MCB.13.8.4640

Cited by

  1. B-Cell Receptor-Associated Protein 31 Regulates Human Embryonic Stem Cell Adhesion, Stemness, and Survival via Control of Epithelial Cell Adhesion Molecule vol.32, pp.10, 2014, https://doi.org/10.1002/stem.1765
  2. Heterogeneous Nuclear Ribonucleoprotein A2/B1 Regulates the Self-Renewal and Pluripotency of Human Embryonic Stem Cells Via the Control of the G1/S Transition vol.31, pp.12, 2013, https://doi.org/10.1002/stem.1366
  3. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7107