• Title/Summary/Keyword: DNA-based Identification

Search Result 628, Processing Time 0.029 seconds

A Versatile Method for DNA Sequencing of Unpurified PCR Products using an Automated DNA Sequencer and Tailed or Nested Primer Labeled with Near-infrared Dye: A Case Study on the Harmful Dinoflagellate Alexandrium

  • Ki Jang-Seu;Han Myung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.70-74
    • /
    • 2006
  • DNA sequence-based typing is considered a robust tool for the discrimination of dinoflagellate species because of the availability of extensive rDNA sequences. Here, we present a rapid, cost-effective DNA-sequencing technique for various PCR products. This sequencing strategy relies on 'nested' or 'tailed' primer labeled with near-infrared dye, and uses a minimal volume of unpurified PCR product (ca. $5{\mu}L$) as the DNA template for sequencing reactions. Reliable and accurate base identification was obtained for several hundred PCR fragments of rRNA genes. This quick, inexpensive technique is widely applicable to sequence-based typing in clinical applications, as well as to large-scale DNA sequencing of the same genomic regions from related species for studies of molecular evolution.

Validation of Morphology-based Identification of Two Cynoglossidae Larvae using Mitochondrial DNA (참서대과(Pisces: Cynoglossidae) 자어 2종의 미토콘드리아 DNA에 의한 형태동정의 타당성)

  • Kwun, Hyuck-Joon;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.482-488
    • /
    • 2010
  • Three specimens of Cynoglossidae larvae were collected from the southern Korean Sea in May and August of 2009, and were identified using morphological and molecular analysis. Specimens were divided into two groups based on the number of elongated dorsal fin rays on the top of the head: Cynoglossidae sp. A was defined as having two elongated dorsal fin rays, while Cynoglossidae sp. B possessed a single elongated dorsal fin ray. One specimen of Cynoglossidae sp. A, a post-larva with a notochord length (NL) of 5.8 mm was thought to be a Cynoglossus joyneri larva based on the presence of 115 dorsal pterogiophores, 85 anal pterogiophores, and 50 myomeres. Two specimens of Cynoglossidae sp. B, a 4.1 mm NL larva and a 11.3 mm NL juvenile, were thought to be Cynoglossus abbreviatus based on the presence of yolk in the former and 133 dorsal fin rays, 105 anal fin rays, and 63 myomeres in the latter. To test this morphology-based identification, molecular analysis was conducted using 419-422 bp of mitochondrial DNA 16S rRNA. Cynoglossidae sp. A was clearly matched to a Cynoglossus joyneri adult (d=0.000) and Cynoglossidae sp. B clustered closely with Cynoglossus abbreviatus adults (d=0.002). A neighbor-joining tree supported this robust relationship (bootstrap value=100%). Therefore, these molecular data validate the morphological identification of the two Cynoglossidae larval species.

Application of DNA Microarray Technology to Molecular Microbial Ecology

  • Cho Jae-Chang
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.22-26
    • /
    • 2002
  • There are a number of ways in which environmental microbiology and microbial ecology will benefit from DNA micro array technology. These include community genome arrays, SSU rDNA arrays, environmental functional gene arrays, population biology arrays, and there are clearly more different applications of microarray technology that can be applied to relevant problems in environmental microbiology. Two types of the applications, bacterial identification chip and functional gene detection chip, will be presented. For the bacterial identification chip, a new approach employing random genome fragments that eliminates the disadvantages of traditional DNA-DNA hybridization is proposed to identify and type bacteria based on genomic DNA-DNA similarity. Bacterial genomes are fragmented randomly, and representative fragments are spotted on a glass slide and then hybridized to test genomes. Resulting hybridization profiles are used in statistical procedures to identify test strains. Second, the direct binding version of microarray with a different array design and hybridization scheme is proposed to quantify target genes in environmental samples. Reference DNA was employed to normalize variations in spot size and hybridization. The approach for designing quantitative microarrays and the inferred equation from this study provide a simple and convenient way to estimate the target gene concentration from the hybridization signal ratio.

  • PDF

Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: from Taxonomic Approaches to Biological Interaction Analysis (동물플랑크톤 연구에 있어 DNA 분석 기법의 활용 방법과 과제: 개체 동정에서 군집 분석, 생물학적 상호작용 분석까지)

  • Oh, Hye-Ji;Chae, Yeon-Ji;Choi, Yerim;Ku, Doyeong;Heo, Yu-Ji;Kwak, Ihn-Sil;Jo, Hyunbin;Park, Young-Seuk;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.156-169
    • /
    • 2021
  • Traditional morphological identification difficulties, such as phenotypic plasticity, misidentification of cryptic species, and larval stage species, can be compensated for by using DNA analysis techniques, such as DNA barcoding, in surveying zooplankton populations, including species identification. Recently, the rapid development of DNA sequencing techniques has allowed DNA-based community analysis not only for zooplankton assemblages in various aquatic ecosystems but also for the gut contents of zooplankton that are limited by conventional methods such as visual and microscopic identification. Therefore, the application of DNA sequencing can help understand biological interactions through the analysis of zooplankton food sources. The present paper introduces the major DNA-based approaches in zooplankton research topics, including taxonomic approaches by DNA barcoding, community-level approaches by metabarcoding, and gut content analyses, summarizes the analysis methods, and finally suggests the methodological topics that need to be considered for future applications.

Phylogeny of Flavobacteria Group Isolated from Freshwater Using Multilocus Sequencing Analysis

  • Mun, Seyoung;Lee, Jungnam;Lee, Siwon;Han, Kyudong;Ahn, Tae-Young
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.272-276
    • /
    • 2013
  • Sequence analysis of the 16S rRNA gene has been widely used for the classification of microorganisms. However, we have been unable to clearly identify five Flavobacterium species isolated from a freshwater by using the gene as a single marker, because the evolutionary history is incomplete and the pace of DNA substitutions is relatively rapid in the bacteria. In this study, we tried to classify Flavobacterium species through multilocus sequence analysis (MLSA), which is a practical and reliable technique for the identification or classification of bacteria. The five Flavobacterium species isolated from freshwater and 37 other strains were classified based on six housekeeping genes: gyrB, dnaK, tuf, murG, atpA, and glyA. The genes were amplified by PCR and subjected to DNA sequencing. Based on the combined DNA sequence (4,412 bp) of the six housekeeping genes, we analyzed the phylogenetic relationship among the Flavobacterium species. The results indicated that MLSA, based on the six housekeeping genes, is a trustworthy method for the identification of closely related Flavobacterium species.

Development of a Plastid DNA-Based Maker for the Identification of Five Medicago Plants in South Korea

  • Kim, Il Ryong;Yoon, A-Mi;Lim, Hye Song;Lee, Sunghyeon;Lee, Jung Ro;Choi, Wonkyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2022
  • DNA markers have been studied and used intensively to identify plant species based on molecular approaches. The genus Medicago belongs to the family Fabaceae and contains 87 species distributed from the Mediterranean to central Asia. Five species of Medicago are known to be distributed in South Korea; however, their morphological characteristics alone cannot distinguish the species. In this study, we analyzed the phylogenetic relationships using collected five species of Medicago from South Korea and 44 taxa nucleotide information from NCBI. The constructed phylogenetic tree using gibberellin 3-oxidase 1 and tRNALys (UUU) to maturase K gene sequences showed the monophyly of the genus Medicago, with five species each forming a single clade. These results suggest that there are five species of Medicago distributed in South Korea. In addition, we designed polymerase chain reaction primers for species-specific detection of Medicago by comparing the plastid sequences. The accuracy of the designed primer pairs was confirmed for each Medicago species. The findings of this study provide efficient and novel species identification methods for Medicago, which will assist in the identification of wild plants for the management of alien species and living modified organisms.

PCR-based Identification of Microorganisms in a Kefir Grain

  • Koo, Won Hoe;Seo, Min-Gook;Ahn, Jung Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • Nowadays many people are concerned about being healthy, and many dairy products are taken as health supplementary foods. Among dairy products, kefir, also called as Tibet mushroom, is a yogurt fermented by kefir grain, which is a mixture of lactic acid bacteria and yeasts. Although there are many empirical evidences that kefir is very influential for human body, the exact reason is not definitively discovered. Therefore, it would be useful to understand characteristics of a kefir grain and to categorize bacteria in a kefir grain. In this paper, molecular biological apparatus such as PCR, electrophoresis, PCR purification, DNA sequencing were used to identify and classify the species of lactic acid bacteria and yeast in a kefir grain. We used PCR-based identification method using 16S rRNA primer and Internal Transcribed Spacer (ITS) primer. We identified 6 different species which were selected on different medium. In addition, observation with scanning electron microscope (SEM) enabled us to grasp an external shape of the kefir grain. Although we found a limited number of microbial species, more intensive research are needed for extensive identification of microorganism species in Korean kefir grain.

  • PDF

Assessment of Genetic Relationship among Date (Zizyphus jujuba) Cultivars Revealed by I-SSR Marker (I-SSR 표지자분석을 이용한 대추나무 품종간 유연관계 분석)

  • Nam, Jae-Ik;Kim, Young-Mi;Choi, Go-Eun;Lee, Gwi-Young;Park, Jae-In
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The jujube is an important fruit tree species in Korea. Traditionally, classifications of jujube cultivars have been based on morphological characters; however, morphological identification can be problematic because morphological traits are affected by environmental conditions. Therefore, DNA markers are now being used for the rapid and accurate identification of plant species. Inter-simple sequence repeat (I-SSR) is one of the best DNA-based molecular marker techniques, which is useful for studying genetic relations and for the identification of closely related cultivars. In this study, 5 Korean jujube trees and 1 jujube tree imported from China were analyzed for 16 I-SSR primers. Amplification of the genomic DNA of jujube cultivars by using I-SSR analysis generated 100 bands, with an average of 6.25 bands per primer, of which 45 bands (45%) were polymorphic. The number of amplified fragments with I-SSR primers ranged from 2 to 13. The percentage of polymorphism ranged from 10% to 100%. I-SSR finger printing profiles showed that 'Boeun jujube' and 'Daeri jujube' had characteristic DNA patterns, indicating unequivocal cultivar identification at molecular level. According to the results of clustering analysis, the genetic similarity coefficient ranged from 0.68 to 0.92. 'Boeun jujube' and 'Daeri jujube' were divided into independent groups, and 'Bokjo jujube', 'Geumseong jujube', 'Wolchul jujube', and 'Mudeung jujube' were placed in the same group. Therefore, I-SSR markers are suitable for the discrimination of 'Boeun jujube' and 'Daeri jujube' cultivars.

Method of DNA Extraction from Pinus rigida Wood Pretreated with Sandpaper

  • Lee, Jamin;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.402-414
    • /
    • 2018
  • Species identification of wood provides important information for archaeology, restoration of cultural assets, preventing illegal logging, and more. Wood species are usually identified based on their anatomical features with the use of a microscope. However, this method may not be able to distinguish between anatomically similar species or subspecies. To overcome this problem, wood species need to be identified at the molecular level using DNA sequencing. However, unlike living plant cells, wood is difficult to pulverize using a mortar, and DNA extraction from dried wood is challenging. To solve these problems, we propose a pretreatment method in which wood is pulverized using 60-grit sandpaper and hydrated with water for 2 days. Using this method, we were able to stably amplify the rpoB gene from the extracted DNA of Pinus rigida. In addition, sequence analysis of the rpoB gene revealed six single nucleotide polymorphisms (SNPs), which classified the rpoB sequences in the genus Pinus into five groups. Our data indicate that although these SNPs were not suitable for species identification, they can potentially be used to determine the origin of different wood subspecies or individual samples of wood.

Identification of eleven species of the Pleuronectidae family using DNA-based techniques

  • Eun-Mi Kim;Mi Nan Lee;Chun-Mae Dong;Eun Soo Noh;Young-Ok Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.678-688
    • /
    • 2023
  • Flatfish are one of the largest families in the order Pleuronectiformes and are economically important edible marine fish species. However, they have similar morphological characteristics leading to challenges in classifying correctly, which may result in mislabeling and illegal sales, such as fraudulent labeling of processed food. Therefore, accurate identification is important to ensure the quality and safety of domestic markets in Korea. Species-specific primers were prepared from the mainly consumed eleven species of the order Pleuronectiformes. To rapidly identify the 11 flatfish species, a highly efficient, rapid, multiplex polymerase chain reaction (PCR) with species-specific primers was developed. Species-specific primer sets were designed for the mitochondrial DNA cytochrome c oxidase subunit I gene. Species-specific multiplex PCR (MSS-PCR) either specifically amplified a PCR product of a unique size or failed. This MSS-PCR analysis is easy to perform and yields reliable results in less time than the previous Sanger sequencing methods. This technique could be a powerful tool for the identification of the 11 species b the family Pleuronectidae and can contribute to the prevention of falsified labeling and protection of consumer rights.