DOI QR코드

DOI QR Code

Method of DNA Extraction from Pinus rigida Wood Pretreated with Sandpaper

  • Lee, Jamin (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2018.05.23
  • Accepted : 2018.07.09
  • Published : 2018.07.25

Abstract

Species identification of wood provides important information for archaeology, restoration of cultural assets, preventing illegal logging, and more. Wood species are usually identified based on their anatomical features with the use of a microscope. However, this method may not be able to distinguish between anatomically similar species or subspecies. To overcome this problem, wood species need to be identified at the molecular level using DNA sequencing. However, unlike living plant cells, wood is difficult to pulverize using a mortar, and DNA extraction from dried wood is challenging. To solve these problems, we propose a pretreatment method in which wood is pulverized using 60-grit sandpaper and hydrated with water for 2 days. Using this method, we were able to stably amplify the rpoB gene from the extracted DNA of Pinus rigida. In addition, sequence analysis of the rpoB gene revealed six single nucleotide polymorphisms (SNPs), which classified the rpoB sequences in the genus Pinus into five groups. Our data indicate that although these SNPs were not suitable for species identification, they can potentially be used to determine the origin of different wood subspecies or individual samples of wood.

Keywords

References

  1. Al-Qurainy, F., Khan, S., Tarroum, M., Al-Hemaid, F.M., Ali, M.A. 2011. Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers. Genetics and Molecular Research 10(4): 2806-2816. https://doi.org/10.4238/2011.November.10.3
  2. Bar, W., Kratzer, A., Machler, M., Schmid, W. 1988. Postmortem stability of DNA. Forensic Science International 39(1): 59-70. https://doi.org/10.1016/0379-0738(88)90118-1
  3. Budowle, B., van Daal, A. 2008. Forensically relevant SNP classes. Biotechniques 44(5): 603-608, 610. https://doi.org/10.2144/000112806
  4. Cano, R.J. 1996. Analysing ancient DNA. Endeavour 20(4): 162-167. https://doi.org/10.1016/S0160-9327(96)10031-4
  5. Degen, B., Ward, S.E., Lemes, M.R., Navarro, C., Cavers, S., Sebbenn, A.M. 2013. Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Science International-Genetics 7(1): 55-62. https://doi.org/10.1016/j.fsigen.2012.06.003
  6. Deguilloux, M.F., Pemonge, M.H., Petit, R.J. 2002. Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proceedings Biological Sciences 269(1495): 1039-1046. https://doi.org/10.1098/rspb.2002.1982
  7. Deguilloux, M.F., Pemonge, M.H., Bertel, L., Kremer, A., Petit, R.J. 2003. Checking the geographical origin of oak wood: molecular and statistical tools. Molecular Ecology 12(6): 1629-1636. https://doi.org/10.1046/j.1365-294X.2003.01836.x
  8. Dormontt, E.E., Boner, M., Braun, B., Breulmann, G., Degen, B., Espinoza, E., Gardner, S., Guillery, P., Hermanson, J.C., Koch, G., Lee, S.L., Kanashiro, M., Rimbawanto, A., Thomas, D., Wiedenhoeft, A.C., Yin, Y.F., Zahnen, J., Lowe, A.J. 2015. Forensic timber identification: It's time to integrate disciplines to combat illegal logging. Biological Conservation 191: 790-798. https://doi.org/10.1016/j.biocon.2015.06.038
  9. Dumolin-Lapegue, S., Pemonge, M.H., Gielly, L., Taberlet, P., Petit, R.J. 1999. Amplification of oak DNA from ancient and modern wood. Molecular Ecology 8(12): 2137-2140. https://doi.org/10.1046/j.1365-294x.1999.00788.x
  10. Eom, Y.-J., Park, B.-D. 2018 Wood species identification of documentary woodblocks of Songok clan of the Milseong Park, Gyeongju, Korea. Journal of the Korean Wood Science and Technology 46(3): 270-277. https://doi.org/10.5658/WOOD.2018.46.3.270
  11. Feuillat, F., Dupouey, J.L., Sciama, D., Keller, R. 1997. A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 27(3): 343-351. https://doi.org/10.1139/x96-174
  12. Finkeldey, R., Leinemann, L., Gailing, O. 2010. Molecular genetic tools to infer the origin of forest plants and wood. Applied Microbiology and Biotechnology 85(5): 1251-1258. https://doi.org/10.1007/s00253-009-2328-6
  13. Gailing, O., Wachter, H., Leinemann, L., Hosius, B., Finkeldey, R., Schmitt, H.P., Heyder, J. 2003. Characterisation of different provenances of late flushing pedunculate oak (Quercus robur L.) with chloroplast markers. Allgemeine Forst Und Jagdzeitung 174(12): 227-231.
  14. Gasson, P. 2011. How precise can wood identification be? Wood anatomy's role in support of the legal timber trade, especially cites. IAWA Journal 32(2): 137-154. https://doi.org/10.1163/22941932-90000049
  15. Hardy, O.J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M.H., Doligez, A., Dutech, C., Kremer, A., Latouche-Halle, C., Troispoux, V., Veron, V., Degen, B. 2006. Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Molecular Ecology 15(2): 559-571. https://doi.org/10.1111/j.1365-294X.2005.02785.x
  16. Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences 270(1512): 313-321. https://doi.org/10.1098/rspb.2002.2218
  17. Hong, J.-K., Yang, J.-C., Lee, Y.-M., Kim, J. H. 2014. Molecular phylogenetic study of Pinus in Korea based on chloroplast DNA psbA-trnH and atpF-H sequences data. Korean Journal of Plant Taxonomy 44(2): 111-118. https://doi.org/10.11110/kjpt.2014.44.2.111
  18. Indrioko, S., Gailing, O., Finkeldey, R. 2006. Molecular phylogeny of Dipterocarpaceae in Indonesia based on chloroplast DNA. Plant Systematics and Evolution 261(1-4): 99-115. https://doi.org/10.1007/s00606-006-0435-8
  19. Jiao, L.C., Liu, X.L., Jiang, X.N., Yin, Y.F. 2015. Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung 69(8): 925-931.
  20. Khan, S., Al-Qurainy, F., Nadeem, M., Tarroum, M. 2012. Development of genetic markers for Ochradenus arabicus (Resedaceae), an endemic medicinal plant of Saudi Arabia. Genetics and Molecular Research 11(2): 1300-1308. https://doi.org/10.4238/2012.May.14.4
  21. Kim, S.C., Choi, J. 2016. Study on wood species identification for Daeungjeon hall of Jeonghyesa temple, Suncheon. Journal of the Korean Wood Science and Technology 44(6): 897-902. https://doi.org/10.5658/WOOD.2016.44.6.897
  22. Kwon, O., Lee, H.G., Lee, M.-R., Jang, S., Yang, S.-Y., Park, S.-Y., Choi, I.-G., Yeo, H. 2017. Automatic wood species identification of Korean softwood based on convolutional neural networks. Journal of the Korean Wood Science and Technology 45(6): 797-808. https://doi.org/10.5658/WOOD.2017.45.6.797
  23. Linacre, A., Tobe, S.S. 2011. An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics 2(1): 2. https://doi.org/10.1186/2041-2223-2-2
  24. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362(6422): 709-715. https://doi.org/10.1038/362709a0
  25. Marco, J., Artajona, J., Larrechi, M.S., Rius, F.X. 1994. Relationship between geographical origin and chemical-composition of wood for oak barrels. American Journal of Enology and Viticulture 45(2): 192-200.
  26. Ogata, K., Fujii, T., Abe, H., Baas, P. 2008. Identification of the timbers of Southeast Asia and the Western Pacific. Kaiseisha Press, Otsu, Japan.
  27. Paabo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N., Kuch, M., Krause, J., Vigilant, L., Hofreiter, M. 2004. Genetic analyses from ancient DNA. Annual Review of Genetics 38: 645-679. https://doi.org/10.1146/annurev.genet.37.110801.143214
  28. Rachmayanti, Y., Leinemann, L., Gailing, O., Finkeldey, R. 2006. Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Molecular Biology Reporter 24(1): 45-55. https://doi.org/10.1007/BF02914045
  29. Rachmayanti, Y., Leinemann, L., Gailing, O., Finkeldey, R. 2009. DNA from processed and unprocessed wood: Factors influencing the isolation success. Forensic Science International: Genetics 3(3): 185-192. https://doi.org/10.1016/j.fsigen.2009.01.002
  30. Smith, D.R. 2017. Does cell size impact chloroplast genome size? Frontiers in Plant Science 8(2116): 1-6.
  31. Sun, X., Feng, F. 2011. Development and analysis on microsatellite sequence of chloroplast DNA of Pinus koraiensis. 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China.
  32. Um, Y., Park, W.-K., Jo, N.-S., Han, S.-H., Lee, Y. 2014. Phylogenetic analysis of pines based on chloroplast trnT-trnL intergenic spacer DNA sequences. Journal of Forest and Environmental Science 30(3): 307-313. https://doi.org/10.7747/JFS.2014.30.3.307
  33. Wheeler, E., Baas, P., Gasson, P. 1989. IAWA list of microcopie features for hardwood identification, National Herbarium of the Netherlands, Netherlands.
  34. Wheeler, E.A., Baas, P. 1998. Wood identification - A review. IAWA Journal 19(3): 241-264. https://doi.org/10.1163/22941932-90001528