• Title/Summary/Keyword: DNA-DNA hybridization

Search Result 871, Processing Time 0.026 seconds

Molecular Phylogenetic Study of Anemone pendulisepala (Ranunculaceae) (태백바람꽃(Anemone pendulisepala, Ranunculaceae)의 분자계통학적 검토)

  • Lee, Chang Shook;Lee, Nam Sook;Yeau, Sung Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.4
    • /
    • pp.263-277
    • /
    • 2006
  • Anemone pendulisepala, recently described as a new species, is distributed in sympatry with A. reflexa, A. amurensis, and A. raddeana at Mt. taebeark and Mt. Baekdu. Anemone pendulisepala was previously proposed to be a hybrid species between A. reflexa and A. amurensis becaue it displavs overlapping features with them in involucre shape, petiole length, sepal apex and xylem shape, To verify the taxonomic status and to examine the hybridity of A. pendulisepala, sequences of ITS region of nuclear ribosomal DNA and the psba-trnH, rps16 and trnLF region of cpDNA from 36 accessions of 5 taxa including outgroup were analyzed. In maximum parsimony tree based on ITS sequences, A. pendulisepala had the same sequences of A. reflexa and was clustered with monophyletic A. amurensis, and then A. raddeana. Anemone pendulisepala was distinguished from the other taxa by having four base insertion in rps16 region, two species-specific bases and insertion in trnLF region. In the phylogenetic trees of combined cpDNA, A. pendulisepala showed monophyly with the bootstrap 100%. Anemone pendulisepala exhibited no polymorphism and shared no sequences with putative parental or related taxa examined in this study. Molecular data suggest that A. pendulisepala should be a distinct species, and no evidence of the hybridization was detectcd.

Modified Suppression Subtractive Hybridization Identifies an AP2-containing Protein Involved in Metal Responses in Physcomitrella patens

  • Cho, Sung Hyun;Hoang, Quoc Truong;Phee, Jeong Won;Kim, Yun Young;Shin, Hyun Young;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • The moss Physcomitrella patens has two life cycles, filamentous protonema and leafy gametophore. A modified from of suppression subtractive hybridization (SSH), mirror orientation selection (MOS), was applied to screen genes differentially expressed in the P. patens protonema. Using reverse Northern blot analysis, differentially expressed clones were identified. The identified genes were involved mainly in metal binding and detoxification. One of these genes was an AP2 (APETALA2) domain-containing protein (PpACP1), which was highly up-regulated in the protonema. Alignment with other AP2/EREBPs (Ethylene Responsive Element Binding Proteins) revealed significant sequence homology of the deduced amino acid sequence in the AP2/EREBP DNA binding domain. Northern analysis under various stress conditions showed that PpACP1 was induced by ethephon, cadmium, copper, ABA, IAA, and cold. In addition, it was highly expressed in suspension-cultured protonema. We suggest that PpACP1 is involved in responses to metals, and that suspension culture enhance the expression of genes responding to metals.

Development of PCR-microplate Hybridization Assay for Detection of Mycobacterium tuberculosis

  • Lee, In-Soo;Cho, Een-Jin;Cho, Sang-Nae;Kim, Tae-Ue;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.295-300
    • /
    • 2009
  • Tuberculosis caused by Mycobacterium tuberculosis (MTB) still remains to be the most dreadful infectious disease affecting almost every country. In the present study, we developed a simple and rapid but accurate and sensitive assay method for detecting MTB using microplate hybridization assay. For this, a selective region of the rpoB gene was used to design PCR primers, and MTB and Mycobacterium genus-specific probe molecules. The specificity of the assay was confirmed using fifteen different mycobacterial reference strains and twelve different non-mycobacterial reference strains, and the sensitivity was determined to be 100 fg using genomic DNA of MTB reference strain, H37Rv. Subsequently, a total of 62 sputum samples with diverse smear scores and culture positive results were used to evaluate the kit performance. In brief, the specificity and the sensitivity of the assay were 100% and 98.4%, respectively.

  • PDF

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF

Identification of Differentially Expressed Genes by Exposure of Methylmercury in Neuroblastoma Cell Line Using Suppression Subtractive Hybridization (SSH)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. This study, using of suppression subtractive hybridization (SSH) method, was peformed to identify differentially expressed genes by MeHg in SH-SY5Y human neuroblastoma cell line. We prepared to total RNA from SH-SY5Y cells treated with solvent (DMSO) and $6.25\;{\mu}M\;(IC_{50})$ MeHg and performed forward and reverse SSH. Differentially expressed cDNA clones were screened by dot blot, sequenced and confirmed that individual clones indeed represent differentially expressed genes with real time RT-PCR. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

The role of cytogenetic tools in orchid breeding

  • Samantha Sevilleno Sevilleno;Raisa Aone Cabahug-Braza;Hye Ryun An;Ki‑Byung Lim;YoonJung Hwang
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.193-206
    • /
    • 2023
  • Orchidaceae species account for one-tenth of all angiosperms including more than 30,000 species having significant ecological, evolutionary, and economic importance. Despite Orchidaceae being one of the largest families among flowering plants, crucial cytogenetic information for studying species diversification, inferring phylogenetic relationships, and designing efficient breeding strategies is lacking, except for 10% or less of orchid species cases involving mostly chromosome number or karyotype analysis. Also, only approximately 1.5% of the identified orchid species from less than a hundred genera have genome size data that provide crucial information for breeders and molecular geneticists. Various molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), have been developed for determining ploidy levels, analyzing karyotypes, and evaluating hybridity, in several ornamental crops including orchids. The estimation of genome size and the determination of nuclear DNA content using flow cytometry have also been employed in some Orchidaceae subfamilies. These different techniques have played an important role in supplementing beneficial knowledge for effective plant breeding programs and other related plant research. This review focused on orchid breeding summarizes the status of current cytogenetic tools in terms of background, advancements, different techniques, significant findings, and research challenges. Principal roles and applications of cytogenetics in orchid breeding as well as different ploidy level determination methods crucial for breeding are also discussed.

Cloning of the Polyhedrin Gene-Containing DNA Fragment of Hyphantria cunea Nuclear Polyhedrosis Virus (흰불나방 핵다각체바이러스 다각체단백질 유전자포함 절편의 클로닝)

  • 박호영;진병래;박순식;김정일;깅석권
    • Korean journal of applied entomology
    • /
    • v.32 no.1
    • /
    • pp.51-60
    • /
    • 1993
  • The polyhedrin gene-containing DNA fragment of Hyphantria cunea nuclear polyhedrosis virus (HcNPV) was localized by southern hybridization with Autographa california CPA EcoRI-I fragment (7.3 kb), Bombyx mori NPV PatI-F fragment (7 kb) and synthetic oligonucleotide(30-mer) as probes. the PstI-L(5.3 kb) fragment of HcNPV was cloned to E. coli and the plasmid of the fragment was named as pHcP-L(8.0 kb). The pHcP-L was physically mapped and subcloned to E. coli as pHcP-L1(4.7 kb), pHcP-L2(7.1 kb), pHcP-L3(5.3 kb), pHcP-L4(4.2 kb) and pHcP-L5(4.5 kb).

  • PDF

Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

  • Luan, Xinhong;Cao, Zhongzan;Xu, Wen;Gao, Ming;Wang, Laiyou;Zhang, Shuwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.921-929
    • /
    • 2013
  • Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.

Isolation and Nucleotide Sequence Characterization of Novel Cytochrome P450 Hydroxylase Genes from Rare Actinomycetes, Sebekia benihana (희소 방선균 Sebekia benihana 유래 신규 사이토크롬 P450 하이드록실레이즈 유전자군 분리 및 염기서열 특성규명)

  • 박남실;박현주;한규범;김상년;김응수
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.308-314
    • /
    • 2004
  • A degenerate set of PCR primers based on two conserved regions (heme binding region and oxygen ligand pocket) were designed and successfully applied to amplify DNA fragments of cytochrome P450 hydroxylase (CYP) genes from a rare actinomycetes, S. benihana. The PCR amplified products were employed as a DNA probe to clone the entire CYP genes from S. benihana genomic library. Five different CYP-positive cosmids were isolated by colony hybridization as well as PCR confirmation. The complete nucleotide sequencing of five different CYP genes revealed that each unique CYP showed a significant amino acid homology to previously-known CYP genes involved in streptomycetes secondary metabolism. In addition, four CYP genes (CYP502, CYP503, CYP504, CYP506) were found to be linked to ferredoxin genes in the chromosome, and the CYP503 gene showed the high degree of amino acid similarity to the previously well-characterized CYP105 family in streptomycetes.