• Title/Summary/Keyword: DNA-DNA hybridization

Search Result 871, Processing Time 0.025 seconds

Cloning, Expression, and Characterization of Thermostable DNA Polymerase from Thermoanaerobacter yonseiensis

  • Kim, Dae-Jin;Jang, Hyeung-Jin;Pyun, Yu-Ryang;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.320-329
    • /
    • 2002
  • A gene, coined tay, for a thermostable DNA polymerase from the novel, extremely thermophilic bacterium Thermoanaerobacter yonseiensis was cloned and expressed in E. coli. Using a DNA polymerase homologous PCR product as a hybridization probe, tay was isolated and sequenced to consist of 2621 nucleotides that encode 872 amino acids. A database analysis showed that DNA polymerase, coined Tay, from T. yonseiensis shared a 39% to 47% identity in the amino acid sequence with those from other DNA polymerases. Tay was overexpressed in E. coli as a fusion protein with a poly-histidine tag at the C-terminus. It was purified by heat treatment, followed by a $Ni^{2+}$-chelate column. The molecular weight of purified Tay was approximately 97 kDa, as shown by SDS PAGE, and it showed high DNA polymerase activity and thermostability. However, it had no 3'$\rightarrow$5' exonuclease activity.

Attribution of PAH Degradation of Sphingomonas chungbukensis DJ77 to the Plasmid pSY1 (Sphingomonas chungbukensis DJ77에 존재하는 Plasmid pSY1의 PAH 분해능)

  • 박승기;김성재;신희정;김영창
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.120-123
    • /
    • 2001
  • Sphingomonas chungbukensis DJ77 is able to use phenanthrene and biphenyl as the sole carbon and energy source. Mitomycin C curing experiment suggested that polyaromatic hydrocarbon (PAH) utilization in strain DJ77 was plasmid-encoded. The plasmid cured strains were failed to grow on the minimal medium sprayed with biphenyl or phenanthrene. This was evident from southern hybridizations using a previously cloned DNA segment as a probe. There were positive signals in the palsmid DNA of the wild-type strain DJ77 and the absence of hybridizations with chromosomal DNA from the plasmid DNA of the wild-type strain DJ77 and the absence of hybridizations with chromosomal DNA from the palsmid-cured mutant strains.

  • PDF

Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles (담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발)

  • Kim, Do-Gyun;Choe, Yong-Seong;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

Simple and Rapid Identification of Low Level Hepatitis B Virus DNA by the Nested Polymerase Chain Reaction

  • Jang, Jeong-Su;Lee, Kong-Joo
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.469-474
    • /
    • 1996
  • A rapid and sensitive method has been developed to detect hepatitis B virus DNA (HBV) by nested polymerase chain reaction (PCR) technique with primers specific for the surface and core regions in capillary thermal cycler within 80 min. The lower limit for detection by present PCR method is $10^{-5}$ pg of recombinant HBV DNA which is equivalent to that determined by one round of PCR amplification and Southern blot hybridization analysis. When boiled HBV positive serum was serially diluted 10-fold, HBV DNA was successfully determined in $1{\mu}l-10^{-3}$ of serum. HBV DNA was detected by present method in 69 clinical samples including HBsAg positives and negatives by enzyme-linked immunosorbent assay (ELISA). When serum samples were amplified by nested PCR using surface and core region primers, HBV DNAs were detected in 37 of 69 samples (53.6%) and 18 of 69 samples (26.1%), respectively. These results can inform the infectious state of HBsAg positive pateints. A simple and rapid nested PCR protocol by using boiled serum as DNA template has been described for the clinical utility to determine HBV DNA in human serum.

  • PDF

The Virulence Factors of Vibrio spp. (비브리오의 병원성 인자에 관한 연구)

  • Oh, Yang-Hyo;Kim, Yung-Bu;Park, Young-Min;Kim, Min-Jung;Cha, Mi-Sun;Kim, Young-Hee;Lim, Eun-Gyoung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.513-518
    • /
    • 1999
  • A total of 113 Vibrio sp. strains were examined for plasmid content which were subjected to digestion with restriction enzymes. About the 55% Vibrio spp. have the plasmid more than one. Most of these plasmid various derivatives ranged from $2.4\;kb{\sim}23\;kb$, especially two strains of V. mimicus and one strain of V. furnissii carried one high-molecular weight plasmid (molecular weight ranging between $70\;kb{\sim}100\;kb$). Results of restriction analysis for plasmid of this three strains were by no means the rule. For detection of tdh and ctx gene, the virulence factor involved in the pathogenesis, we carried out the TDH and CT assay, PCR amplification, and hybridization. A total 11 strains were produced TDH, involved in 9 strains of V. parahaemolyticus and 1 strain of V. alginolyticus from clinical isolates and 1 strains of V. mimicus from environmental isolates. In the experiments of tdh gene detection, in all, 3 strains of V. parahaemolyticus from clinical isolates and 2 strains from environmental isolates could be successfully amplified in 400 bp by PCR. The PCR results were consistent with DNA hybridization tests. In the experiments of CT assay, in all, 3 strains of V. cholerae from clinical isolate and 1 strain of V. cholerae from environmental isolates were observed CT-producing. These CT-producing strains amplified in 302 bp by PCR for the detection of ctx gene. All CT-producing strains hybridized with digoxigenin-labeled DNA probe, while CT-negative strains did not hybridize. Also hybridization tests results for detection of ctx gene consistent with PCR.

  • PDF

High Yield Saponin Production by Mass Cultures of Ginseng Transformed Tissue I. Induction, Culture of Transformed Tissue and Selection of High-Saponin-Producing Clones in Ginseng (인삼 형질전환 조직의 다량배양에 의한 Saponin 고 생산 I. 인삼에서 형질전환 조직의 유도, 배양과 Saponin 고 생산능주 선발)

  • 이정석;고경민
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • Hairy root clones of Panax ginseng were established by selection of some hairy roots formed on the leaf, stem and root segments transformed with Agrobacterium rhizogenes strain $A_4$. The transformed roots grew well in MS medium under the dark condition. To confirm the transformation with Ri-T-DNA, dot blot hybridization and opine analysis were Performed. Among four hairy roots induced from different part of ginseng, the HB3 hairy roots were examined for selection of high-saponin-producing clones. Four clones isolated from HB3 hairy root cultures displayed various phenotypes characterized by growth and total saponin content. Maximum growth was obtained for cultures of HB3-10 clone and the content of total saponin was 0.55 wt%. However, higher amount of total saponin was obtained with HB3-2 clone cultures(0.74 wt%) in spite of lower growth. Dot blot hybridization confirmed the introduction of Ri-T-DNA in the plant genome. In the opine test, agropine and mannopine were detected from all hairy root clones.

  • PDF

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

Spermatogonia 단계에 특이적으로 발현하는 유전자 동정

  • 옥도원;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.48-48
    • /
    • 2003
  • 본 실험은 spermatogonia 단계에 발현하는 유전자를 찾기 위하여 suppression subtractive hybridization를 수행하였다. 기존에 mouse에서는 spermatogonia 특이적인 유전자들이 밝혀져 있기 때문에 pig에 특이적인 유전자를 찾기 위하여 pig 250days testis와 pig 60days testis를 재료로 하여 실험하였다. SSH를 통하여 254days testis에 특이적으로 발현되는 후보유전자를 7개 찾았고 25days testis와 60days testis 의 Northern blot을 통하여 25days에 과발현하고 60days에 발현의 양이 대폭 줄어드는 spermatogonia 유전자로 생각되는 후보유전자 2개를 선택하여 pig tissue northern blot, genomic DNA southern blot, RT-PCR 그리고 In-situ hybridization을 수행하였다. Tissue northern blot과 RT-PCR을 통하여 후보자 1번은 간과 폐, 난소, 정소에서 발현하고, 후보유전자 15번은 난소와 정소에서만 특이적으로 발현함을 알았다. DNA sequence analysis와 NCBI Blast search를 통하여 후보자 1번은 다른 종에서 밝혀진 유전자였고 후보유전자 15번은 어느 종에서도 밝혀지지 않은 새로운 유전자였다. Degenerated primer를 통하여 후보자 1번의 pig full sequence를 밝히고 NCBI에 등록하였다. 그리고 In-situ hybridization을 통하여 후보유전자득이 20일째 testis의 Leydic cell에서 많이 발현되고 adult testis에서는 발현이 감소하는 결과를 얻었다. 이것으로 보아 위의 두 후보유전자는 spermatogonia에 직접 관련된 유전자이기 보다는 spermatogonia의 발달에 영향을 주는 leydic cell 특이발현을 가진 유전자로 사료되어진다.

  • PDF

Flanking Sequence and Copy-Number Analysis of Transformation Events by Integrating Next-Generation Sequencing Technology with Southern Blot Hybridization

  • Qin, Yang;Woo, Hee-Jong;Shin, Kong-Sik;Lim, Myung-Ho;Cho, Hyun-Suk;Lee, Seong-Kon
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.269-281
    • /
    • 2017
  • With the continual development of genetically modified (GM) crops, it has become necessary to develop detailed and effective molecular characterization methods to select candidate events from a large pool of transformation events. Relative to traditional molecular analysis methods such as the polymerase chain reaction (PCR) and Southern blot hybridization, next generation sequencing (NGS) technology for whole-genome sequencing of complex crop genomes had proven comparatively useful for in-depth molecular characterization. In this study, four transformation events, including one in Bacillus thuringiensis (Bt)-resistant rice, one in resveratrol-producing rice, and two in beta-carotene-enhanced soybeans, were selected for molecular characterization. To merge NGS analysis and Southern blot-hybridization results, we confirmed the transgene insertion sites, insertion construction, and insertion numbers of these four transformation events. In addition, the read-coverage depth assessed by NGS analysis for inserted genes might provide consistent results in terms of inserted T-DNA numbers in case of complex insertion structures and highly duplicated donor genomes; however, PCR-based methods can produce incorrect conclusions. Our combined method provides an effective and complete analytical approach for whole-genome visual inspection of transformation events that require biosafety assessment.

Genomic DNA Chip: Genome-wide profiling in Cancer

  • 이종호
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.61-86
    • /
    • 2001
  • All cancers are caused by abnormalities in DNA sequence. Throughout life, the DNA in human cells is exposed to mutagens and suffers mistakes in replication, resulting in progressive, subtle changes in the DNA sequence in each cell. Since the development of conventional and molecular cytogenetic methods to the analysis of chromosomal aberrations in cancers, more than 1,800 recurring chromosomal breakpoints have been identified. These breakpoints and regions of nonrandom copy number changes typically point to the location of genes involved in cancer initiation and progression. With the introduction of molecular cytogenetic methodologies based on fluorescence in situ hybridization (FISH), namely, comparative genomic hybridization (CGH) and multicolor FISH (m-FISH) in carcinomas become susceptible to analysis. Conventional CGH has been widely applied for the detection of genomic imbalances in tumor cells, and used normal metaphase chromosomes as targets for the mapping of copy number changes. However, this limits the mapping of such imbalances to the resolution limit of metaphase chromosomes (usually 10 to 20 Mb). Efforts to increase this resolution have led to the "new"concept of genomic DNA chip (1 to 2 Mb), whereby the chromosomal target is replaced with cloned DNA immobilized on such as glass slides. The resulting resolution then depends on the size of the immobilized DNA fragments. We have completed the first draft of its Korean Genome Project. The project proceeded by end sequencing inserts from a library of 96,768 bacterial artificial chromosomes (BACs) containing genomic DNA fragments from Korean ethnicity. The sequenced BAC ends were then compared to the Human Genome Project′s publicly available sequence database and aligned according to known cancer gene sequences. These BAC clones were biotinylated by nick translation, hybridized to cytogenetic preparations of metaphase cells, and detected with fluorescein-conjugated avidin. Only locations of unique or low-copy Portions of the clone are identified, because high-copy interspersed repetitive sequences in the probe were suppressed by the addition of unlabelled Cotl DNA. Banding patterns were produced using DAPI. By this means, every BAC fragment has been matched to its appropriate chromosomal location. We have placed 86 (156 BAC clones) cytogenetically defined landmarks to help with the characterization of known cancer genes. Microarray techniques would be applied in CGH by replacement of metaphase chromosome to arrayed BAC confirming in oncogene and tumor suppressor gene: and an array BAC clones from the collection is used to perform a genome-wide scan for segmental aneuploidy by array-CGH. Therefore, the genomic DNA chip (arrayed BAC) will be undoubtedly provide accurate diagnosis of deletions, duplication, insertions and rearrangements of genomic material related to various human phenotypes, including neoplasias. And our tumor markers based on genetic abnormalities of cancer would be identified and contribute to the screening of the stage of cancers and/or hereditary diseases

  • PDF