• 제목/요약/키워드: DNA synthesis inhibitors

검색결과 30건 처리시간 0.024초

Synthesis of 6-Formyl-pyridine-2-carboxylate Derivatives and their Telomerase Inhibitory Activities

  • Jew, Sang-Sup;Park, Boon-Saeng;Lim, Doo-Yeon;Kim, Myoung-Goo;Chung, In-Kwon;Kim, Joo-Hee;Hong, Chung-Il;Kim, Joon-Kyum;Park, Hong-Jun;Lee, Jun-Hee;Park, Hong-Jun;Lee, Jun-Hee;Park, Hyeung-Geun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.181.4-182
    • /
    • 2003
  • Telomeres are DNA-protein complexes at the ends of chromosomes, which play an essential protective role against DNA degradation and aberrant recombination during cell divisions. Several telomerase inhibitors have been reported as candidates for new antitumor drugs. Among them, 2-thiobenzylpyridines, developed by Geron. Co Ltd. as a telomerase inhibitor, were chosen as lead compounds. Twenty-one pyridine-2- carboxylate derivatives were prepared by the coupling of 6-formyl-2-carboxylic acid with the corresponding phenol, thiophenol, and aniline, substituted with various functional groups. (omitted)

  • PDF

시호의 사구체 메산지움 세포 증식억제 효능 및 작용기전 연구 (The Anti-Proliferation Effects and Its Mechanism of Bupleurum falcatum on Human Mesangial Cell)

  • 이병철;안영민;두호경;안세영
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.9-17
    • /
    • 2004
  • Objective : Mesangial cell proliferation and excessive accumulation of extracellular matrix (ECM) proteins is the common pathologic feature of glomerulosclerosis, and platelet-derived growth factor (PDGF) BB-chain, transforming growth factor betal $(TGF-{\beta}1)$, cyclin dependent kinases (CDK) and CDK inhibitors mediated in these pathophysiological processes. Bupleurum falcatum which is one of the most widely used components in traditional oriental medicines, has multiple pharmacological effects, such as antipyretic, analgesic, immune modulating, anti-inflammatory, anti-allergic, anti-thrombotic, anti-atherosclerotic, and antitussive effects. Methods : In this study, we evaluated the influence of Bupleurum falcatum on mesangial cell proliferation, DNA synthesis and expression of PDGF-BB chain, $TGF-{\beta}1$, CDKI, CDK2, CDK4, p21 and p27 in fetal bovine serum (FBS)-activated human mesangial cell. Results : Bupleurum falcatum reduced the mesangial cell proliferation and DNA synthesis more than control and captopril. And in the ELISA analysis of $TGF-{\beta}1$, and RT-PCR of PDGF-BB chain, CDK1, CDK2, CDK4, p21, and p27, Bupleurum falcatum inhibited the expression of $TGF-{\beta}1$ protein and PDGF-BB, CDK1, CDK2 gene and promoted that of p21 gene in a dose-dependent manner in comparing with control and captopril. Conclusions: These results suggest that Bupleurum falcatum may inhibit the mesangial cell proliferation and DNA synthesis by regulation of PDGF-BB and $TGF-{\beta}1$ expressions, and by modulation of CDK1, CDK2 and p21 expression.

  • PDF

홍삼 추출물에 의한 유전독성 감소효과 (I) - 배양 NIH3T3 세포에서 자외선에 의한 유전독성의 감소에 미치는 홍삼추출물 처리효과 (Decrease of Genotoxicity by Red Ginseng Root Extract (I) - Decrease of UV -induced Genotoxicity by Red Ginseng Root Extract in Cultured NIH3T3 Cells)

  • 김완주;유병수
    • 대한화장품학회지
    • /
    • 제24권1호
    • /
    • pp.74-86
    • /
    • 1998
  • 자외선에 의한 유전독성의 감소에 미치는 홍삼추출물의 영향을 배양 NIH3T3 세포계에서 분석하였다. 자외선을 조사한 후 정상 배지에서 배양한 시간간격에 따라 세포의 생존률은 증가하였는데 홍삼추출물이 함유된 배지에서 배양한 경우는 약 15%정도 증가한 생존률을 보였다. 자외선을 조사한 후 감소된 DNA복제가 정상배지 배양시간에 따라 증가하는 정도도 홍삼추출물을 후처리할 경우 현저한 증가를 보였다. 자외선 상해를 회복하기 위한 절제회복능은 홍삼추출물을 처리할 경우 유의미한 증가를 보였다. 이러한 절제회복과정 중 효소에 의한 절제단계가 홍삼추출물 처리에 의해 활성화됨을 단사절단 분석을 통하여 규명하였다. 이상의 결과는 홍삼추출물이 자외선 상해의 절제회복에 유의미한 증가를 보이며 따라서 유전독성을 감소시키는 항노화제로써 사용할 수 있음을 시사한다.

  • PDF

방선균 유래 이차대사 생합성 유전자 분석용 DNA Microarray 제작 및 해석 (Construction and Analysis of a DNA Microarray for the Screening of Biosynthetic Genes of Secondary-Metabolites formation in Streptomyces)

  • 남수정;강대경;이기형;김종희;강상순;장용근;홍순광
    • 미생물학회지
    • /
    • 제41권2호
    • /
    • pp.105-111
    • /
    • 2005
  • 다양한 균주들을 대상으로 무작위로 신물질을 스크리닝하는 방법은 많은 노력과 시간이 소요되는 방법이며, 신물질을 발견하는 비율도 계속 낮아지고 있다. 따라서 기존 균주들을 대상으로 microarray 기술을 이용한 target-directed screening기술의 개발은, 학문적 뿐만 아니라 산업적으로도 중요한 의미를 가진다. 본 연구에서는, 이미 분리된 방선균각각의 유전체를 대상으로 microarray 분석을 통해, 새로운 생리활성 물질 생산균주 및 생합성 유전자를 확보할 수 있는 기법을 개발하기 위한 기초실험을 수행하였다. 즉, 기존에 알려진 생리활성물질 생합성 유전자들을 확보하여 DNA chip을 제조하였으며, 유전체 염기서열이 밝혀진 S. coelicolor 균주를 대상으로 그 효율성을 검증하였다. 전체적으로 유전자 상동성이 높을수록 반응감도도 높은 편이었으나, 이러한 상환관계가 일치하지 않는 유전자들도 있었다. 이와 같은 문제는, probe 유전자의 G+C 비율$(\%)$을 서로 비슷하게 구성하거나, 반응조건을 최적화 시킨다면 DNA chip의 효율성을 더욱 높일 수 있을 것으로 판단된다. DNA microarray를 통한 생리활성물질 발굴 연구는 세계적으로도 보고된 바 없는 새로운 접근방법으로서, 본 연구에서 시도하고 있는 방법은 발굴 target과 대상을 지정하고 시도되기 때물에, 효율면에서 무작위 스크리닝과는 비교되지 않을 정도로 높을것으로 예상된다. 또한 본 연구와 같은 접근방법을 최적화 시킨다면, 방선균뿐만 아니라 다른 미생물부터 생리활성물질 및 생합성유전자 스크리닝에도 효과적으로 응용할 수 있을 것이다.

Glycyrrhetinic acid와 oleanolic acid가 배양 치은 섬유모세포의 cyclosporine A 유도 세포활성에 미치는 영향 (THE EFFECTS OF GLYCYRRHETINIC ACID AND OLEANOLIC ACID TO CYCLOSPORINE A INDUCED CELL ACTIVITY OF CULTURED GINGIVAL FIBROBLASTS)

  • 김영욱;김재현;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제24권2호
    • /
    • pp.238-254
    • /
    • 1994
  • Cyclosporine A is an immunosuppressant commonly used for patients receiving organ transplants. Gingival overgrowth is an adverse side-effect seen in about 8-26% of patients taking cyclosporine A which have been shown to increase the DNA synthesis of gingival fibroblast at the concentration of $10^{-9}g/ml$ in vitro. Glycyrrhetinic acid is the active pharmacological ingredients of licorice which exerts steroid-like action and anti-viral activity. Oleanolic acid, which were isolated from Glechoma hederacea, has been shown to act as inhibitors of tumor promotion in vivo and to be less cytotoxic retinoic acid. This study has been performed to evaluate the effects of glycyrrhetinic acid and oleanolic acid on cyclosporine A induced cell activity in vitro. Human gingival fibroblasts were isolated from explant cultures of healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and transferred to the walls of microtest plates. Fibroblasts were cultured in growth medium added $10^{-9}g/ml$ cyclosporineA and $50{\mu}l/ml$ lipopolysaccharides. Cells between the 4th and 6th transfer in culture were used for this study. The morphology of gingival fibroblst were examined by inverted microscope. The effects of cyclosporine A on the time course of DNA sythesis by human gingival fibroblasts were assessed by $[^3H]-thymidine$ uptake assays. Cyclosporine A was found to stimulate DNA synthesis of human gingival fibroblast at a concentration of $10^{-9}g/ml$. In the presence of lipopolysaccharide derived from Fusobacterium nucleatum, addition of cyclosporine A results in reversal of inhibition at the concentration which normally inhibits gingival fibroblast proliferation. The cell acitivities in the presence of glycyrrhetinic acid and oleanolic acid were decreased, and increased cell acitivities by cyclosporine A were decreased by glycyrrhetinic acid and oleanolic acid at the concentration of $200{\mu}g/ml$. These results suggested that the increased cell activities by cyclosporine A modulated by glycyrrhetinic acid and oleanolic acid.

  • PDF

Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells

  • Yoon, Hyunyee;Sung, Ji Hyun;Song, Moon Jung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.154-165
    • /
    • 2021
  • This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Pyridoxatin, an Inhibitor of Gelatinase A with Cytotoxic Activity

  • Lee, Ho-Jae;Chung, Myung-Chul;Lee, Choong-Hwan;Chun, Hyo-Kon;Kim, Hwan-Mook;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.445-450
    • /
    • 1996
  • Gelatinase A is a member of the matrix metalloproteinases that play an important role in cancer invasion and metastasis. In the course of screening gelatinase A inhibitors from microbial sources, a fungal strain PT-262 showed a strong inhibitory activity. The strain was identified as Chaunopycnis alba on the basis of its morphological characteristics. The inhibitor was isolated from acetone extract of mycelial cake by sequential chromatographies on MCI-gel, Sephadex LH-20, and a reverse-phase HPLC column. The purified inhibitor was identified as pyridoxatin by its physico-chemical properties and spectroscopic analysis. Pyridoxatin is not a peptide analog and has cyclic hydroxamic acid moiety. It inhibited activated gelatinase A with an $IC_{50}$ value of 15.2 ${\mu}M$ using fluorescent synthetic peptide. It also had a strong cytotoxicity against human cancer cell lines in vitro. Furthermore, this compound inhibited DNA synthesis with an $IC_{50}$ value of 2.92 ${\mu}M$ in PC-3 prostate cancer cells by [$^3H$]thymidine incorporation assay.

  • PDF

Effect of Antibiotics upon the Antibacterial Activity of Platelet Microbicidal Protein against Streptococcus rattus BHT

  • Kim, Jae-Wook;Choe, Son-Jin;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • 제34권1호
    • /
    • pp.43-48
    • /
    • 2009
  • Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.

세포주기조절에 관한 최근 연구 (Significance of Cell Cycle and Checkpoint Cnotrol)

  • 최영현;최혜정
    • 생명과학회지
    • /
    • 제11권4호
    • /
    • pp.362-370
    • /
    • 2001
  • Regulation of cell proliferation is a complex process involving the regulated expression and /or modification of discrete gene products. which control transition between different stages of the cycle. The purpose of this short review is to provide an overview of somatic cell cycle events and their controls. Cycline have appeared as major positive regulators in this network, because their association to the cyclin-dependent kinases(Cdks) allows the subsequent activation on the Cdk/cyclin complexes and their catalatic activity. In mammalian cells, early to mid G1 progression and late G1 progression leading to S phase entry are directed by D-type cyclins-Cdk4, 6 and cyclin E-Cdk 2 both of which can phosphorylate the retinoblastoma protein (pRB). pRB is a transcriptional repressor which, in its unphosphorylated state, binds to members of the E2F transcription factor family and blocks E2F-dependent transcription of genes controlling the G1 to S phase transition an subsequent DNA synthesis. Cyclin A is produced in late G1 and expressed during S and G2 phae, and expression of B-type cyclins is typically maximal during the G2 to M phase transition and it controls the passage through M phase. They primarily associate with the activate Cdk2, and Cdc2, respectively. On the other hand, the Cdk inhibitors negatively control the activity of C아/cyclin complex by coordinating internal and/or external signals and impending proliferation at several key checkpoints. These current and further findings will provide novel approaches to understanding and treating major diseases.

  • PDF