• 제목/요약/키워드: DNA synthesis inhibitor

검색결과 57건 처리시간 0.029초

Design and Synthesis of Benzoquinoxalinediones

  • Kwon, Nam-Koong;Choi, Byung-Gil;Lee, Hee-Soon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.347.1-347.1
    • /
    • 2002
  • In cancer chemotherapy. it is becoming increasingly clear that the DNA topoisomerases play an active role in the expression of the cytotoxic action of drugs. The amino substituted azaanthraquinones have attracted much interest due to their possible role as topoisomerase inhibitors. In connection with our interests in the design and synthesis of potent topoisomerase inhibitor. we herein described the preparation of a series of benzoquinoxalinedione derivatives. These were designed based on the SAR of azaanthraquinones and structural analysis of products which are fitted with doxorubicin.

  • PDF

GTP Induces S-phase Cell-cycle Arrest and Inhibits DNA Synthesis in K562 Cells But Not in Normal Human Peripheral Lymphocytes

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.492-501
    • /
    • 2006
  • Since differentiation therapy is one of the promising strategies for treatment of leukemia, universal efforts have been focused on finding new differentiating agents. In that respect, we used guanosine 5'-triphosphate (GTP) to study its effects on K562 cell line. GTP, at concentrations between 25-200 ${\mu}M$, inhibited proliferation (3-90%) and induced 5-78% increase in benzidine-positive cells after 6-days of treatments of K562 cells. Flow cytometric analyses of glycophorine A (GPA) showed that GTP can induce expression of this marker in more mature erythroid cells in a time- and dose-dependent manner. These effects of GTP were also accompanied with inhibition of DNA synthesis (measured by [$^3H$]-thymidine incorporation) and early S-phase cell cycle arrest by 96 h of exposure. In contrast, no detectable effects were observed when GTP administered to unstimulated human peripheral blood lymphocytes (PBL). However, GTP induced an increase in proliferation, DNA synthesis and viability of mitogen-stimulated PBL cells. In addition, growth inhibition and differentiating effects of GTP were also induced by its corresponding nucleotides GDP, GMP and guanosine (Guo). In heat-inactivated medium, where rapid degradation of GTP via extracellular nucleotidases is slow, the anti-proliferative and differentiating effects of all type of guanine nucleotides (except Guo) were significantly decreased. Moreover, adenosine, as an inhibitor of Guo transporter system, markedly reduced the GTP effects in K562 cells, suggesting that the extracellulr degradation of GTP or its final conversion to Guo may account for the mechanism of GTP effects. This view is further supported by the fact that GTP and Guo are both capable of impeding the effects of mycophenolic acid. In conclusion, our data will hopefully have important impact on pharmaceutical evaluation of guanine nucleotides for leukemia treatments.

Induction of Apoptosis by Bile Acids in HepG2 Human Hepatocellular Carcinoma Cells

  • Baek, Jin-Hyen;Kim, Jung-Ae;Kang, Chang-Mo;Lee, Yong-Soo;Kim, Kyu-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.107-115
    • /
    • 1997
  • We studied the effects of bile acids on the induction ofapoptosis in HepG2 human hepatocellular carcinoma cells. Treatment with either ursodeoxycholic acid (UDCA) or lithocholic acid (LCA) resulted in a dose- and time-dependent decrease in cell viability assessed by MTT assay. Both UDCA and LCA also induced genomic DNA fragmentation, a hallmark of apoptosis, indicating that the mechanism by which these bile acids induce cell death was through apoptosis. Cycloheximide, a protein synthesis inhibitor, blocked the apoptosis induced by these bile acids, implying that new protein synthesis may be required for the apoptosis. Intracellular $Ca^{2+}$ release blockers (dantrolene and 3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester) inhibited decreased cell viability and DNA fragmentation induced by these bile acids. Treatment of HepG2 cells with calcium ionophore A23l87 induced DNA fragmentation. These results suggest that UDCA and LCA induce apoptosis in the HepG2 cells and that the activation of intracellular $Ca^{2+}$ signals may play an important role in the apoptosis induced by these bile acids.

  • PDF

Inhibition of DNA Methylation Is Involved in Transdifferentiation of Myoblasts into Smooth Muscle Cells

  • Lee, Won Jun;Kim, Hye Jin
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.441-444
    • /
    • 2007
  • Despite the importance of cell fate decisions regulated by epigenetic programming, no experimental model has been available to study transdifferentiation from myoblasts to smooth muscle cells. In the present study, we show that myoblast cells can be induced to transdifferentiate into smooth muscle cells by modulating their epigenetic programming. The DNA methylation inhibitor, zubularine, induced the morphological transformation of C2C12 myoblasts into smooth muscle cells accompanied by de novo synthesis of smooth muscle markers such as smooth muscle ${\alpha}$-actin and transgelin. Furthermore, an increase of p21 and decrease of cyclinD1 mRNA were observed following zebularine treatment, pointing to inhibition of cell cycle progression. This system may provide a useful model for studying the early stages of smooth muscle cell differentiation.

Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest

  • Jo, Yongsam;Shin, Deug Y.
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.379-383
    • /
    • 2017
  • We previously reported that p53 plays a role as a key regulator in the tetraploid G1 checkpoint, which is activated by actin damage-induced cytokinesis blockade and then prevents uncoupled DNA replication and nuclear division without cytokinesis. In this study, we investigated a role of Skp2, which targets CDK2 inhibitor p27/Kip1, in actin damage-induced tetraploid G1 arrest. Expression of Skp2 was reduced, but p27/Kip1 was increased, after actin damage-induced cytokinesis blockade. The role of Skp2 repression in tetraploid G1 arrest was investigated by analyzing the effects of ectopic expression of Skp2. After actin damage, ectopic expression of Skp2 resulted in DNA synthesis and accumulation of multinucleated cells, and ultimately, induction of apoptosis. These results suggest that Skp2 repression is important for sustaining tetraploid G1 arrest after cytokinesis blockade and is required to prevent uncoupled DNA replication and nuclear division without cytokinesis.

Synthesis of 1,2,3-and 1,2,4-Triazole Isonucleosides as Potential antiviral agents

  • Jeong, Soon-Yong;Kim, Myong-Jung;Chun, Moon-Won
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.181.2-181.2
    • /
    • 2003
  • Inosine monophosphate dehydrogenase(IMPDH) catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in the de novo biosynthesis of guanine nucleotide. Its critical role at the metabolic branch point in purine nucleotide biosynthesis makes it a useful target in the development of drugs for antiviral and anticancer chemotherapy and in immunosupressant area. Several compound with antiviral activity have been found to be inhibitors of IMPDH. For example, ribavirin, a competitive inhibitor of IMPDH, has broad spectrum antiviral activities against DNA and RNA viruses. (omitted)

  • PDF

Pretreatment of Low Dose Radiation Reduces Radiation-Induced Apoptosis in Mouse Lymphoma (EL4) cells

  • Kim, Jeong-Hee;Hyun, Soo-Jin;Yoon, Moon-Young;Jioon, Young-Hoon;Cho, Chul-Koo;Yoo, Seong-Yul
    • Archives of Pharmacal Research
    • /
    • 제20권3호
    • /
    • pp.212-217
    • /
    • 1997
  • Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of ${\gamma}$-rays (0.01 Gy) 4 or 20 hrs prior to high dose ${\gamma}$-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose .gamma.-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-.betha.-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose ${\gamma}$-ray irradiation to high dose ${\gamma}$-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  • PDF

Synthesis and Biological Evaluation of Phenoxy-N-phenylacetamide Derivatives as Novel P-glycoprotein Inhibitors

  • Lee, Kyeong;Roh, Sang-Hee;Xia, Yan;Kang, Keon-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3666-3674
    • /
    • 2011
  • Overexpression of P-glycoprotein (Pgp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. Pgp inhibitors have been shown to effectively reverse Pgp-mediated MDR. We prepared a series of phenoxy-N-phenylacetamide derivatives and tested for their ability to inhibit Pgp as potential MDR reversing agents, using a Pgp over-expressing MCF-7/ADR cell line. Some of the synthesized compounds exhibited moderate to potent reversal activity. Of note, compound 4o showed a 3.0-fold increased inhibition compared with verapamil, a well-known Pgp inhibitor. In addition, co-treatment of the representative compound 4o and a substrate anticancer agent doxorubicin resulted in a remarkable increase in doxorubicin's antitumor effect and inhibition of DNA synthesis in the MCF-7/ADR cell line. Taken together, these findings suggest that compound 4o could be a useful lead for development of a novel Pgp inhibitor for treatment of MDR.

Synthesis of 6-Formyl-pyridine-2-carboxylate Derivatives and their Telomerase Inhibitory Activities

  • Jew, Sang-Sup;Park, Boon-Saeng;Lim, Doo-Yeon;Kim, Myoung-Goo;Chung, In-Kwon;Kim, Joo-Hee;Hong, Chung-Il;Kim, Joon-Kyum;Park, Hong-Jun;Lee, Jun-Hee;Park, Hong-Jun;Lee, Jun-Hee;Park, Hyeung-Geun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.181.4-182
    • /
    • 2003
  • Telomeres are DNA-protein complexes at the ends of chromosomes, which play an essential protective role against DNA degradation and aberrant recombination during cell divisions. Several telomerase inhibitors have been reported as candidates for new antitumor drugs. Among them, 2-thiobenzylpyridines, developed by Geron. Co Ltd. as a telomerase inhibitor, were chosen as lead compounds. Twenty-one pyridine-2- carboxylate derivatives were prepared by the coupling of 6-formyl-2-carboxylic acid with the corresponding phenol, thiophenol, and aniline, substituted with various functional groups. (omitted)

  • PDF

조각자가 생쥐에 이식된 L1210 세포의 증식에 미치는 영향 (Effect of Gleditsiae Spina on Proliferation of Transplanted-L1210 cells in Mice)

  • 조선경;은재순;김대근;소준노;오찬호;송정모
    • 대한한의학회지
    • /
    • 제22권4호
    • /
    • pp.37-44
    • /
    • 2001
  • Objectives : Cellular death by apoptosis is an active process, depending on gene transcription and protein synthesis. It was reported that nitric oxide can induce apoptosis in several cancer cell-lines. We have previously observed that proliferation of Ll210 cells was inhibited by the administration of Gleditsiae Spina water extract (GE). In this present study, the mechanism of inhibitory action on the proliferation of L l210 cells was examined. Methods : The cell proliferation was determined by MTT assay and DNA fragmentation was determined by a flow cytometry. Results : The administration of GE decreased proliferation of L1210 cells and enhanced DNA fragmentation in vivo system. DNA fragmentation of L1210 cells was enhanced by co-culture of peritoneal macrophages obtained from GE-administered mice in vitro and it was partly inhibited by L-NMMA, nitric oxide synthetase inhibitor. In addition, GE increased nitric oxide production from peritoneal macrophages of L1210-transplanted mice. Conclusions : These results suggest that the inhibitory action of GE on proliferation of transplanted-L1210 cells is partly caused by an induction of apoptosis via production of nitric oxide in macrophages.

  • PDF