• Title/Summary/Keyword: DNA structure

Search Result 1,003, Processing Time 0.028 seconds

Theoretical Studies on the Photochemical Reaction of Psoralen(I) Structure-Activity Studies on the Psoralen (소랄렌의 광화학 반응에 대한 이론적 연구 (I) 소랄렌의 구조-활성화에 대하여)

  • Ja Hong Kim;Gil Young Chung;Sung Ho Sohn;Kee Soo Yang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.396-400
    • /
    • 1993
  • The structure-activity relationship of photo-skinsensitizing psoralens has been investigated by the MM2, FMO, molecular connectivity methods. The molecular complexes between DNA and photoskinsensitizing psoralens are discussed in terms of their differing abilities to complex and react with psoralen interstrand cross linking DNA base. The photoskinsensitiziers are analyzed with respect to the sterographics models of the active sites of the psoralens and frontier orbital density is closely correlated with photo-skinsensitizing carcinogenic activity.

  • PDF

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Influence of Growth Conditions on Plasmid DNA Production

  • Silva, Filomena;Passarinha, Luis;Sousa, Fani;Queiroz, Joao A.;Domingues, Fernanda C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1408-1414
    • /
    • 2009
  • The obtention of high yields of purified plasmid DNA is viewed as an essential issue to be considered towards efficient production of DNA vaccines and therapeutic plasmids. In this work, Escherichia coli $DH5\alpha$. bearing the pVAXI-LacZ plasmid was grown in a developed semi-defined medium at different temperatures and tryptone concentrations. Analysis of pDNA yields and E. coli morphology revealed that at higher temperatures (37 and $40^{\circ}C$), higher specific yields and E. coli filamentation were obtained. However, the best results were achieved when a lower tryptone concentration was used. This approach was shown to be a powerful tool to promote plasmid amplification, keeping the desirable plasmid structure, and favoring the attainment of quality. Our results suggest that by using tryptone alone as an amino acid source, pDNA amplification was improved and a specific yield of 20.43 mg pDNA/g dcw was achieved, proving that this strategy can improve pDNA yield even at a small scale.

An Efficient Data Structure to Obtain Range Minima in Constant Time in Constructing Suffix Arrays (접미사 배열 생성 과정에서 구간 최소간 위치를 상수 시간에 찾기 위한 효율적인 자료구조)

  • 박희진
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.145-151
    • /
    • 2004
  • We present an efficient data structure to obtain the range minima in an away in constant time. Recently, suffix ways are extensively used to search DNA sequences fast in bioinformatics. In constructing suffix arrays, solving the range minima problem is necessary When we construct suffix arrays, we should solve the range minima problem not only in a time-efficient way but also in a space-efficient way. The reason is that DNA sequences consist of millions or billions of bases. Until now, the most efficient data structure to find the range minima in an way in constant time is based on the method that converts the range minima problem in an array into the LCA (Lowest Common Ancestor) problem in a Cartesian tree and then converts the LCA problem into the range minima problem in a specific array. This data structure occupies O( n) space and is constructed in O(n) time. However since this data structure includes intermediate data structures required to convert the range minima problem in an array into other problems, it requires large space (=13n) and much time. Our data structure is based on the method that directly solves the range minima problem. Thus, our data structure requires small space (=5n) and less time in practice. As a matter of course, our data structure requires O(n) time and space theoretically.

Design of the Wavelet-Based Fuzzy PI/PO Controller Using DNA Coding Method (웨이블릿 기반 DNA 코딩기법을 이용한 광디스크 드라이브용 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.370-372
    • /
    • 2004
  • This paper addresses the wavelet-based fuzzy PI/PD controller design using DNA coding method. A structure of fuzzy controller model is adopted as the wavelet transform of which the coefficients are identified. The proposed method overcomes some mathematical limits of conventional methods by using the fuzzy logic that is optimized by DNA coding method. The feasibility of the proposed fuzzy controller design scheme is verified by applying to the servo control of the optical disk drive.

  • PDF

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

Interaction of a 22 kDa Peptidyl Prolyl cis/trans Isomerase with the Heat Shock Protein DnaK in Vibrio anguillarum

  • Kang, Dong Seop;Moon, Soo Young;Cho, Hwa Jin;Lee, Jong Min;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.644-647
    • /
    • 2017
  • Peptidyl prolyl cis/trans isomerases (PPIases) catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds preceding prolines. We investigated the protein-protein interaction between a 22 kDa PPIase (VaFKBP22, an FK506-binding protein) and the molecular chaperone DnaK derived from Vibrio anguillarum O1 (VaDnaK) using GST pull-down assays and a bacterial two-hybrid system for in vivo and in vitro studies, respectively. Furthermore, we analyzed the three-dimensional structure of the protein-protein interaction. Based on our results, VaFKBP22 appears to act as a cochaperone of VaDnaK, and contributes to protein folding and stabilization via its peptidyl-prolyl cis/trans isomerization activity.

Molecular cloning of cDNAs for Korean garlic viruses

  • Choi, Jin-Nam;Ahn, Ji-Hoon;Choi, Yang-Do;Lee, Jong-Seob
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.315-317
    • /
    • 1993
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses (GV), virus particles were isolated from field-grown garlic leaves and RNA genome was isolated from them. It was used for constructing cDNA library for GV. Several cDNA clones for GV were isolated and classified into 4 different groups on the basis of cross Southern hybridization. Northern blot analysis of GV RNA with one of these cDNA clones shows that the clone is a cDNA for GV RNA.

  • PDF

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.