• Title/Summary/Keyword: DNA strand breaks

Search Result 137, Processing Time 0.029 seconds

Effects of 3-Aminobenzamide on DNA Strand Breaks and Excision Repair in CHO cells Exposed to Methyl Methanesulfonate and Ultraviolet-light (MMS와 자외선을 처리한 CHO세포에 있어서 DNA사 절단과 절제회복에 미치는 3-aminobenzamide의 영향)

  • Park, Sang-Dai;Jang, Young-Ju;Roh, Jung-Koo
    • The Korean Journal of Zoology
    • /
    • v.26 no.3
    • /
    • pp.171-179
    • /
    • 1983
  • Amounts of DNA single strand breaks and unscheduled DNA synthesis in CHO cells exposed to MMS were increased in the presence of 3-aminobenzamide, a potent inhibitor of poly (ADP-ribose) polymerase. However, those in cells irradiated with UV-light were decreased. These results suggest that poly (ADP-ribose) polymerase acts negatively on the MMS-induced base excision repair but positively on the UV-induced nucleotide excision repair. In the combined treatment with MMS and UV-light in the presence of this inhibitor, amounts of strand breaks were just the same as those in the absence of the inhibitor. But those of unscheduled DNA synthesis were increased up to the amount induced by UV-light alone. These results may suggest that poly (ADP-ribose) polymerase affects the incision step of excision repair induced by MMS and UV-light independently, and that it may potentiate the complete cleaving of UV-induced pyrimidine dimers possibly by the repair enzymes which might have been partially inactivated by MMS.

  • PDF

Effect of fisetin on UVB-induced apoptosis and DNA single strand breaks in NIH3T3 cells (NIH3T3 세포에서 UVB에 의한 세포고사와 DNA 단사절단에 미치는 fisetin의 효과)

  • Jeong, Se-Jin;Kim, Don-Young;Han, Seol-Hee;Shin, Sang-Min;Cha, Jae-Young;Park, Nou-Bog;Lee, Jung-Sup;Park, Jong-Kun
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.64-69
    • /
    • 2007
  • In the present study, we have investigated the effect of fisetin on the apoptosis and DNA single strand breaks in ultraviolet light B (UVB)-exposed NIH3T3 cells. Exposure of cells to UVB light $(200J/m^2)$ and post-incubation in growth medium for 48 hr resulted in about 50% of cells with apoptotic nuclear fragmentation. Addition of various concentrations of fisetin in the postincubation medium, however, significantly reduced the apoptotic nuclear fragmentation as compared with the values expected when the effects are additive and independent. DNA single strand breaks induced by UVB exposure were also significantly decreased by postincubation with fisetin. By Western blot analysis, fisetin post-incubation was shown to attenuate the p53 upregulation upon UVB exposure. Furthermore, the decrease of proliferating cell nuclear antigen (PCNA) level upon UVB exposure was alleviated by fisetin postincubation. These results suggest that fisetin decrease the apoptosis and increae DNA repair in a possible association with alteration of p53 and PCNA levels in UVB-exposed cells.

PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER (DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자)

  • Oh, Jung-Hwan;Lee, Deok-Won;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

Effects of 835-MHz Radiofrequency Radiation on the Chromosomal DNA of Mouse Thymic Lymphoma L5178Y $Tk^{+/-}$ Cells

  • Choi, Jong-Soon;Son, TaeHo;Chang, Sung-Keun;Hong, Sae-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.507-512
    • /
    • 2004
  • This study was focused on the risk assessment of whether radiofrequency electromagnetic fields generated by mobile phone is cytogenetically toxic or not. We conducted the effects of 835-MHz electromagnetic field (EMF) on DNA strand breaks in mouse thymic lymphoma L5178Y $Tk^{+/1-}$ cells using alkaline comet assay. EMF frequency 835-MHz we chosen is one of the most popular communication frequency bands in Korean code-division multiple-access (CDMA) mobile phone system. The cells were exposed to 835-MHz EMF alone or 835-MHz EMF combined with cyclophosamide(CPA) or 4-nitroquinoline-1-oxide (4NQO) at specific absorption rate (SAR) of 4.0 W $kg^{-l}$ for 24 and 48hrs. DNA damage expressed as tail moment was increased more than two-fold after exposure to 835-MHz EMF for 24 and 48hr. In particular, CPA for 48hr and 4NQO for 24 hr enhanced notably the tail moment to 9-fold and 16-fold in the presence of 835-MHz EMF, respectively, compared to each single treatment. From these results, it appears that exposure to CDMA-mobile phone radiation at 835-MHz frequency may potentiate DNA strand breaks of mouse thymic lymphoma L5178Y $Tk^{+/1-}$;cells under the defined conditions of this study.

Effects of Monosodium Glutamate on Unscheduled DNA Synthesis and DNA Single-Strand Breaks in Primary Cultures of Rat Hepatocytes (일차배양 간세포에서 Monosodium Glutamate에 의한 돌연변이 유발성의 검증)

  • 김동현;양규환
    • Environmental Mutagens and Carcinogens
    • /
    • v.7 no.2
    • /
    • pp.59-64
    • /
    • 1987
  • Cytotoxic and genotoxic potential of monosodium glutamate (MSG) were evaluated in primary cultures of rat hepatocytes. When exposed to liver cell culture continuously for 24 hr, MSG did not show any cytotoxic effects up to 0.5% (w/v) level as determined by Tryphan Blue exclusion and lactic dehydrogenase release test. MSG also did not induce unscheduled DNA synthesis or DNA single-strand breaks in hepatocyte cultures up to 1% level. No synergistic effects of MSG were observed on aflatoxin B$_1$-induced DNA damage when 1% MSG was treated to liver cell culture along with aflatoxin B$_1$.

  • PDF

Mutation, DNA Strand Cleavage and Nitric Oxide Formation Caused by N-nitrosoproline with UVA & UVB

  • Arimoto-Kobayashi, Sakae;Ando, Yoshiko;Horai, Yumi;Okamoto, Keinosuke;Hayatsu, Hikoya;Green, Michael H.L.
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.49-50
    • /
    • 2002
  • N-Nitrosoproline(NPRO) is endogenously formed from proline and nitrite. NPRO has been reported to be nonmutagenic and noncarcinogenic. In this study, we have detected the direct mutagenicity of NPRO with UVA and UVB towards S. typhimurium. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a mutagenic lesion, was observed in calf thymus DNA treated with NPRO plus simulated sunlight. Furthermore, the treatment with NPRO and sunlight induced single strand breaks in the superhelical replicative form of phage M13mp2 DNA. An analysis using scavengers suggested that both reactive oxygen species and NO radical mediate the strand breaks. The formation of nitric oxide was observed in NPRO solution irradiated with UVA. The co-mutagenic and co-toxic actions of NPRO and sunlight merit attention as possible mechanisms increasing the carcinogenic risk from UVA irradiation.

  • PDF

Evaluation of Genotoxicity in Blood Cells of a Polychaetous Worm (Perinereis aibuhitensis), Using Comet Assay (Comet assay를 이용한 갯지렁이 (Perinereis aibuhitensis)의 혈구세포에 대한 유전독성 평가)

  • Seo Jin Young;Sung Chan Gyoung;Choi Jin Woo;Lee Chang Hoon;Ryul Tae Kwon;Han Gi Myung;Kim Gi Beum
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.333-341
    • /
    • 2005
  • In order to know whether polychaetes could be used as an appropriate organism for the detection of genotoxicity, DNA strand breaks were evaluated in blood cells of a nereidae worm (Perinereis aibuhitensis) exposed to various aquatic chemical pollutants (e.g. Cd, Pb, Pyrene, Benaor[a]pyrene). Hydrogen peroxide increased DNA strand breaks up to the highest concentration (10 $\mu$M). Higher concentration than 0.1 $\mu$M showed a significantly more DNA damage than control. Cadmium and lead also showed higher DNA damage than control, over 1.0 and 1 $\mu$g/L, respectively. In case of pyrene, DNA damage was detected even at 0.001 $\mu$g/L. However, DNA damage decreased due to apoptosis at the highest concentration of pyrene and Pb. This study suggested that the polythaetous blood cells could be used effectively for screening genotoxic contaminants in the environment.

Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae (효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화)

  • Sung, Young Jin;Yoon, Sang Wook;Kim, Keun Pil
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • During meiosis, genetic recombinants are formed by homologous recombination accompanying with the programmed double-strand breaks (DSBs) and strand exchanges between homologous chromosomes. The mechanism is generated by recombination intermediates such as single-end invasions (SEIs) and double-Holliday junctions (dHJs), and followed by crossover (CO) or non-crossover (NCO) products. Our study was focused on the analysis of meiotic recombination intermediates (DSBs, SEIs, and dHJs) and final recombination products (CO and NCO). We identified these meiotic recombination intermediates using DNA physical analysis under HIS4LEU2 "hot spot" system in budding yeast, Saccharomyces cerevisiae. For DNA physical analysis, when the hot spot locus is recognized by restriction enzyme from synchronous meiotic cells, the fragmented DNA that are forming recombination intermediates can be detected and quantified through Southern hybridization analysis. Our study suggests that this system can analyze the structural change of recombination intermediates during DSB-SEI transition, double-Holiday junctions and crossover/non-crossover products in meiosis.