• Title/Summary/Keyword: DNA polymerase gene

Search Result 859, Processing Time 0.026 seconds

Rapid Identification of Lactobacillus plantarium in Kimchi Using Polymerase Chain Reaction

  • Kim, Tae-Woon;Min, Sung-Gi;Choi, Dong-Hun;Jo, Jae-Sun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.881-884
    • /
    • 2000
  • A polymerase chain reaction (PCR) was performed to rapidly identify Lactobacillus plantarum from type strains and kimchi samples. The PCR experiments were carried out using specific oligonucleotide primer sets based on the 16S rRNA gene sequences of L. plantarum. The expected DNA amplificate of 419 bp was obtained when either purified DNA or whole cells of L. plantarum strains reacted with LP primers, yet not with any of the other strains. The PCR product was confirmed by DNA sequencing. Accordingly, since the PCR method used is simple, specific, and rapid, it will be useful for monitoring and evaluation L. plantarum in the mixed microbial population found in kimchi.

  • PDF

Specific detection of salmonella enteritidis using polymerase chain reaction method (PCR을 이용한 salmonella enteritidis의 특이적 검출)

  • 조미영;여용구;김영섭;이정학;이병동
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2000
  • Salmonella enteritidis is the most prevalent etiologic agents of foodborne acute gastroenteritis. Direct isolation and identification of S enteritidis are time consuming work and not so highly sensitive. This study was conducted to develop for the specific detection of S enteritidis using polymerase chain reaction(PCR). PCR primers were selected to amplify a 351-base pair(bp) DNA fragment from the salmonella plasmid virulence A(spv A) gene of S enteritidis. With the primers, 351 bp DNA products were amplified from S enteritidis but not from other B, D, Cl serogroup Salmonella spp. It was sensitive to detect up to 40 pg of template DNA by agarose gel electrophoresis. This PCR assay is very rapid and specific method and less time consuming than the standard bacteriological methods.

  • PDF

Cloning, Sequencing and Expression of dTDP-D-Glucose 4,6-Dehydratase Gene from Streptomyces antibioticus $T\ddot{u}99$, a Producer of Chlorothricin

  • Sohng, Jae-Kyung;Yoo, Jin-Cheol
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.183-191
    • /
    • 1996
  • DNA fragments, homologous to the dTDP-D-glucose 4,6-dehydratase gene, obtained from the genomic DNA of Streptomyces antibioticus $T\ddot{u}99$, a producer of the unusual macrolide antibiotic chlorothricin, were cloned and sequenced. This dehydratase gene was designated as oxil. The coding region of the oxil gene is composed of 987 bp, and analysis of the DNA sequence data reveals sequences for the gene products of 329 amino acids (molecular weight of 36,037). The deduced amino acids are 59% identical to the StrE, dTDP-D-glucose 4,6-dehydratase from the streptomycin pathway. The oxil's function was examined by expressing it in E. coli using the T7 RNA polymerase/promoter system (pRSET) to produce an active fusion protein including a his tag. This enzyme shows specificity of substrate, specific only to dTDP-D-glucose.

  • PDF

Isolation and Characterization of Brain-Derived Neurotrophic Factor Gene from Flounder (Paralichthys olivaceus)

  • LEE JAE HYUNG;CHOI TAE-JIN;NAM SOO WAN;KIM YOUNG TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.838-843
    • /
    • 2005
  • Brain-derived neurotrophic factor (BDNF) is a small secretory protein and a member of the nerve growth factor (NGF) gene family. We cloned the flounder BDNF gene from a flounder brain cDNA library. The nucleotide sequence of the cloned gene showed an open reading frame (ORF) consisting of 810 bp, corresponding to 269 amino acid residues. The tissue distribution of flounder BDNF was determined by reverse transcription-polymerase chain reaction (RT-PCR) in brain, embryo, and muscle tissues. To express fBDNF using a eukaryotic expression system, we constructed the vector mpCTV-BDNF containing the fBDNF gene and transformed this vector into Chlorella ellipsoidea. Stable integration of introduced DNA was confirmed by PCR analysis of genomic DNA, and mRNA expression in C. ellipsoidae was confirmed by RT-PCR analysis.

Optimization of DNA Extraction and PCR Conditions for Fungal Metagenome Analysis of Atmospheric Particulate Matter (대기 입자상물질 시료의 곰팡이 메타게놈 분석을 위한 DNA 추출 및 PCR 조건 최적화)

  • Sookyung Kang;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.99-108
    • /
    • 2023
  • Several challenges arise in DNA extraction and gene amplification for airborne fungal metagenome analysis from a particulate matter (PM) samples. In this study, various conditions were tested to optimize the DNA extraction method from PM samples and polymerase chain reaction (PCR) conditions with primer set and annealing temperature. As a result of comparative evaluation of DNA extraction under various conditions, chemical cell lysis using buffer and proteinase K for 20 minutes and bead beating treatment were followed by using a commercial DNA extraction kit to efficiently extract DNA from the PM filter samples. To optimize the PCR conditions, PCR was performed using 10 primer sets for amplifying the ITS2 gene region. The concentration of the PCR amplicon was relatively high when the annealing temperature was 58℃ with the ITS3tagmix3/ITS4 primer set. Even under these conditions, when the concentration of the PCR product was low, nested PCR was performed using the primary PCR amplicon as the template DNA to amplify the ITS2 gene at a satisfactory concentration. Using the methods optimized in this study, DNA extraction and PCR were performed on 15 filter samples that collected PM2.5 in Seoul, and the ITS2 gene was successfully amplified in all samples. The optimized methods can be used for research on analyzing and interpreting the fungal metagenome of atmospheric PM samples.

Mechanism of Action of Anticancer Drug Aziridinylbenzoquinones: Involvement of DT-diaphorase (DNA에 결합하는 항암제의 작용기전)

  • Lee, Chong-Soon-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.147-172
    • /
    • 1994
  • Aziridinylbenzoquinones such as 3, 6-diaziridinyl-1, 4-benzoquinone (DZQ) and its 2, 5-methyl analog (MeDZQ) require bioreductive activation in order to elicit their anticancer activities. To determine the involvement of DTD in the activation of these drugs, we have used a ligation-mediated polymerase chain reaction to map the intracellular alkylation sites in a sing1e copy gene at the nucleotide level. We have performed this analysis in two human colon carcinoma cells, one proficient (HT-29) and one deficient (BE) in DT-diaphorase (DTD) activity. In the DTD proficient HT-29 cell line, DZQ and MeDZQ were found to alkylate both 5'-(A/T)G(C)-3' and 5'-(A/T)A-3' sequences. This is consistent with the nucleotide preferences observed when DZQ and MeDZQ are activated by purified DTD to reactive metabolites capable of alkylating DNA in vitro [Lee, C. -S., Hartley, J. A., Berardini, M. D., Butler, J., Siegel., D., Ross, D., & Gibson, N. W. (1992) Biochemistry, 31: 3019-3025]. Surprisingly in the DTD-deficient BE cell line a pattern of alkylation induced by DZQ and MeDZQ similar to that observed in the DTD-proficient HT-29 cells was observed. This suggests that reductive enzymes other than DTD can be involved in activating DZQ and MeDZQ to DNA reactive species in vivo.

  • PDF

Rapid Enumeration of Listeria monocytogenes in Pork Meat Using Competitive PCR

  • Lim, Hyung-Kun;Hong, Chong-Hae;Choi, Weon-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.387-391
    • /
    • 2005
  • Competitive polymerase chain reaction (cPCR) was used to develop a direct enumeration method of Listeria monocytogenes in pork meat. Pork meat was artificially inoculated with L. monocytogenes and DNA was extracted using guanidine thiocyanate-phenol-chloroform and subjected to PCR amplification. Sixteen primer sets for L. monocytogenes hlyA gene were tested for sensitive detection and the DG69/DG74 primer set was selected. The detection limit achieved with this primer set was as low as 860 colony-forming units (cfu) per 0.1 g of pork meat. When the samples were cultured at $30^{\circ}C$ for 16 hr in Brain Heart Infusion (BHI) medium, even a single bacterium could be detected with this primer set by PCR. For cPCR, the hlyA gene, which features a 148 bp-deletion, was cloned in the pGEM-4Z vector. A known amount of competitor DNA which has the same primer binding sites was co-amplified with L. monocytogenes total DNA from the artificially inoculated pork meat. The cell-number determined by cPCR was approximately equal to cfu from the Most Probable Number (MPN) method. The whole procedure took only 5 hr.

C-G Linker Adaptor PCR Method for Genome Walking (C-G 링커 어댑터 PCR을 이용한 지놈워킹)

  • Seo, Hyo-seok;Lee, Yung-gi;Jeon, Eun-young;Lee, Jeong-heon
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • Genome walking is a par ticular application for identifying sequences of unknown genomic regions adjacent to a known region. Many genome walking methods based on polymerase chain reaction (PCR) are available. Even if earlier techniques suffer from low reproducibility, inefficiency, and non-specificity, improved strategies have been developed. In this study, we present an alternative strategy: the genomic DNA is digested with restriction enzymes. After cytosine overhangs at 5' ends, the fragments are ligated to linker adaptor s had guanine overhang at 3' ends. Then nested PCR is performed. The improvements in this strategy focus on two points. The first is the C tailing method using Pfu polymerase instead of the A tailing method based on nontemplate-dependent terminal transferase activity of Taq polymerase. Therefore unintended modification of target DNA can be prevented without A tailing error. The second point is the use of C/G-specific ligation had advantage in the ligation efficiency compared with A/T-specific ligation. Therefore, the C-G linker PCR method increases ligation efficiency between digested genomic DNA and adaptor DNA. As a result, the quantity of target DNA to amplify by PCR is enriched. We successfully used G-C linker PCR to retrieve flanking regions bordering the phophinothricin resistance gene in genetically modified tobacco (GMO).

  • PDF

Detection of Toxoplasma gondii in experimentally infected porcine blood and tissues by polymerase chain reaction (Polymerase chain reaction을 이용한 실험적 감염 돼지의 혈액과 조직으로부터 Toxoplasma gondii 검출)

  • Suh, Myung-deuk;Shin, Gee-wook
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.89-98
    • /
    • 2001
  • This study was conducted to detect the toxoplasma specific-DNA in circulating blood and organs collected from slaughtered pigs at slaughtering house and experimentally infected pigs with Toxoplasma gondii tachyzoites by polymerase chain reaction(PCR), and also PCR was applied to diagnose for acute phase of swine toxoplasmosis as a newly developed diagnostic test. The sensitivity of oligonucleotide primer, T-1 & T-2, designed from toxoplasma B1 gene amplification method was compared with Tp parasite detection by mouse inoculation(MI). On the other hand, latex agglutination test(LAT) was conducted to detect the serum antibodies comparing with the detection of toxoplasma by PCR and MI. The results obtained were summarized as follows. PCR was able to determine at the lowest level of $10^0/ml$ T. gondii in blood samples which were blended with a serial diluted T gondii in vitro. On the other hand, $10^2/5g$ of T gondii could detect from a variety of tissues including lung, diaphragm, liver, heart, spleen and brain in vitro. The primer was proved to specifically determine T gondii in blood and tissues in vitro but it did not detect Neospora caninum used as a negative control. DNA of T. gondii was effectively extracted by freezing, thawing and grinding twice both tissues mixed with T gondii in vitro and in experimentally infected pig's tissues. PCR detected specific DNA in the blood of experimentally infected pigs at 108 hrs and 120 hrs post-infection, it was the same time that the pigs showed fever and parasitaemia. In case of tissue, specific DNA was, however, detected only lung from experimentally infected pigs. Even though the duration of acute phase was from 3 to 7 days post-infection, but the latex agglutination test (LAT) results appeared from 8 days post-infection. A comparison of sensitivity in determining T gondii in blood samples between PCR and MI, PCR positive rate ranged from 25 to 33.3%, but that of MI covered from 75 to 100%.

  • PDF

Genomic Polymorphisms of Genome DNA by Polymerase Chain Reaction-RAPD Analysis Using Arbitrary Primers in Rainbow Trout (PCR-RAPD 기법에 의한 무지개송어 Genome DNA 의 다형현상)

  • Yoon, J.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 1999
  • Nuclear DNA was isolated from the sperm cells representing genetic characteristics and genomic polymorphisms of rainbow trout by polymerase chain reaction(PCR) amplification of DNA using arbitrary primers. Genomic DNA fingerprints were generated from rainbow trout sperm DNA by polymerase chain reaction amplification using 20 arbitrary decamers as primers. Out of these primers, 4 generated 17 highly reproducible RAPD markers, producing almost six polymorphic bands per primers. Four of 6 primers tested generated amplified fragments which were polymorphic between different individuals. Polymorphic DNA fragments were reproducibly amplified from independent DNA preparations made from individuals. Rainbow trout was distinctly observed 3 specific DNA markers (2. 3, 2.0 and 1.3kb) in bandsharing. Individual fragments generated using the same arbitrary primer, demonstrated that a single primer detected at least three independent genomic polymorphisms in rainbow trout sperm DNA. The RAPD polymorphism generated by this primer may be used as a genetic marker for individual identification The RAPD-PCR technique has been shown to reveal informative polymorphism in many species of fish. The present results demonstrate that RAPD markers are abundant, reproducible and provide a basis for future gene mapping and MAS in these important aquaculture species using RAPD polymorphic markers. It is concluded that RAPD polymorphisms are useful as genetic markers for fish breed differentiation.

  • PDF