• Title/Summary/Keyword: DNA melting

Search Result 79, Processing Time 0.028 seconds

Internal Transcribed Spacer Barcoding DNA Region Coupled with High Resolution Melting Analysis for Authentication of Panax Species (DNA 바코딩과 고해상 융해곡선분석에 기반한 인삼속 식물의 종 판별)

  • Bang, Kyong Hwan;Kim, Young Chang;Lim, Ji Young;Kim, Jang Uk;Lee, Jung Woo;Kim, Dong Hwi;Kim, Kee Hong;Jo, Ick Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.439-445
    • /
    • 2015
  • Background : Correct identification of Panax species is important to ensure food quality, safety, authenticity and health for consumers. This paper describes a high resolution melting (HRM) analysis based method using internal transcribed spacer (ITS) and 5.8S ribosomal DNA barcoding regions as target (Bar-HRM) to obtain barcoding information for the major Panax species and to identify the origin of ginseng plant. Methods and Results : A PCR-based approach, Bar-HRM was developed to discriminate among Panax species. In this study, the ITS1, ITS2, and 5.8S rDNA genes were targeted for testing, since these have been identified as suitable genes for use in the identification of Panax species. The HRM analysis generated cluster patterns that were specific and sensitive enough to detect small sequence differences among the tested Panax species. Conclusion : The results of this study show that the HRM curve analysis of the ITS regions and 5.8S rDNA sequences is a simple, quick, and reproducible method. It can simultaneously identify three Panax species and screen for variants. Thus, ITS1HRM and 5.8SHRM primer sets can be used to distinguish among Panax species.

Binding Interactions of TMAP to Triple- and Double Helical DNA

  • Kim, Nan-Jung;Yoo, Sang-Heon;Huh, Sung-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.175-187
    • /
    • 2006
  • Binding interactions between a positively charged porphyrin derivative TMAP(meso-tetra(p-trimethylanilinium-4-yl)porphyrin) and triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, as well as double helical $(dA)_{12}{\cdot}(dT)_{12}$ have been studied with NMR, UV and CD spectroscopy to obtain the detailed information about the binding mode and binding site. UV melting studies showed both DNA duplex and triple helix represented very similar UV absorption patterns upon binding TMAP, but the presence of third strand of triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, inhibited improvement in thermal stability in terms of melting temperature, $T_m$. In addition, the TMAP molecule is thought to bind to the major groove, according to CD and NMR data. But absence of the clear isosbestic point in UV absorption spectra represented that binding of TMAP to DNA duplex as well as DNA triplex did not show a single binding mode, rather complex binding modes.

  • PDF

Genetic Analysis of Polymorphic DNA Markers in Cucumber (오이 다형성 마커를 이용한 유전분석)

  • Lee, Sun-Young;Chung, Sang-Min
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.468-472
    • /
    • 2011
  • DNA marker is a powerful tool for plant genetics and breeding. In this study, 995 SSR markers were employed with chilling resistant cucumber, known as 'NC76', and chilling susceptible cucumber, known as 'GY14'. Using 2% agarose gel electrophoresis, 145 SSR markers were identified as length variation markers between 'NC76' and 'GY14'. The SSR markers that showed no length polymorphism were then screened using high resolution melting analysis technique and additional 30 polymorphic SSR markers were identified. As a preliminary evaluation for mapping, 20 markers among these 175 markers were employed to a $F_2$ population of 'NC76' x 'GY14' cross. Linkage analysis revealed 13 markers that joined into six linkage groups and seven markers that remained unlinked. This result indicates that these 175 markers could be used for construction of a genetic map using a cross between 'NC76' and 'GY14' for further investigation in developing markers related to resistance to chilling in cucumbers.

High-throughput SNP Genotyping by Melting Curve Analysis for Resistance to Southern Root-knot Nematode and Frogeye Leaf Spot in Soybean

  • Ha, Bo-Keun;Boerma, H. Roger
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.91-100
    • /
    • 2008
  • Melting curve analysis of fluorescently labeled DNA fragments is used extensively for genotyping single nucleotide polymorphism(SNP). Here, we evaluated a SNP genotyping method by melting curve analysis with the two probe chemistries in a 384-well plate format on a Roche LightCycler 480. The HybProbe chemistry is based on the fluorescence resonance energy transfer(FRET) and the SimpleProbe chemistry uses a terminal self-quenching fluorophore. We evaluated FRET HybProbes and SimpleProbes for two SNP sites closely linked to two quantitative trait loci(QTL) for southern root-knot nematode resistance. These probes were used to genotype the two parents and 94 $F_2$ plants from the cross of PI 96354$\times$Bossier. The SNP genotypes of all samples determined by the LightCycler software agreed with previously determined SSR genotypes and the SNP genotypes determined on a Luminex 100 flow cytometry instrument. Multiplexed HybProbes for the two SNPs showed a 98.4% success rate and 100% concordance between repeats two of the same 96 DNA samples. Also, we developed a HybProbe assay for the Rcs3 gene conditioning broad resistance to the frogeye leaf spot(FLS) disease. The LightCycler 480 provides rapid PCR on 384-well plate and allows simultaneous amplification and analysis in approximately 2 hours without any additional steps after amplification. This allowed for a reduction of the potential contamination of PCR products, simplicity, and enablement of a streamlined workflow. The melting curve analysis on the LightCycler 480 provided high-throughput and rapid SNP genotyping and appears highly effective for marker-assisted selection in soybean.

  • PDF

Polyvalent Nanoparticle-oligonudleotide conjugates: Synthesis, Properties, and Biodiagnostic/Therapeutic Applications

  • Lee, Jae-Seung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Polyvalent nanoparticle-DNA conjugates exhibit a variety of unique features such as programmable assembly and disassembly, sharp melting transitons, intense optical properties, high stability, enhanced binding properties, and easy fabrication of the surface nature by chemical and physical modification. The unique properties of nanoparticle-DNA conjugates enable one to build up a number of versatile assay schemes for the detection of various targets. In addition, nanoparticle-RNA conjugates also demonstrate great promise of therapeutic applications in the context of RNA interference when combined with polymeric materials. In this presentation, representative examples of each aspect of nanoparticle-oligonucleotide conjugates will be discussed.

  • PDF

Evaluation of DNA Fragments on Boar Sperm by Ligation-mediated Quantitative Real Time PCR

  • Lee, Eun-Soo;Choi, Sun-Gyu;Yang, Jae-Hun;Bae, Mun-Sook;Park, Jin-Young;Park, Hong-Min;Han, Tae-Kyu;Hwang, You-Jin;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • Sperm chromatin integrity is essential for successful fertilization and development of an embryo. Reported here is a quantification of DNA fragments which is intimately associated with reproductive potential to provide one of criteria for sperm chromatin integrity. Three sperm populations were considered: CONTROL (no treatment), UV irradiation (48mW/$cm^2$, 1h) and $H_2O_2$ (oxidative stress induced by hydrogen peroxide, 10 mM, 50 mM and 100 mM). DNA fragments in boar sperm were evaluated by using ligation-mediated quantitative real-time polymerase chain reaction (LM-qPCR) assay, which relies on real-time qPCR to provide a measure of blunt 5' phosphorylated double strand breaks in genomic DNA. The results in agarose gel electrophoresis showed no significant DNA fragmentation and no dose-dependent response to $H_2O_2$. However, the remarkable difference in shape and position was observed in melting curve of LM-qPCR. This result supported that the melting curve analysis of LM-qPCR presented here, could be more sensitive and accurate than previous DNA fragmentation assay method.

Co-amplification at Lower Denaturation-temperature PCR Combined with Unlabled-probe High-resolution Melting to Detect KRAS Codon 12 and 13 Mutations in Plasma-circulating DNA of Pancreatic Adenocarcinoma Cases

  • Wu, Jiong;Zhou, Yan;Zhang, Chun-Yan;Song, Bin-Bin;Wang, Bei-Li;Pan, Bai-Shen;Lou, Wen-Hui;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10647-10652
    • /
    • 2015
  • Background: The aim of our study was to establish COLD-PCR combined with an unlabeled-probe HRM approach for detecting KRAS codon 12 and 13 mutations in plasma-circulating DNA of pancreatic adenocarcinoma (PA) cases as a novel and effective diagnostic technique. Materials and Methods: We tested the sensitivity and specificity of this approach with dilutions of known mutated cell lines. We screened 36 plasma-circulating DNA samples, 24 from the disease control group and 25 of a healthy group, to be subsequently sequenced to confirm mutations. Simultaneously, we tested the specimens using conventional PCR followed by HRM and then used target-DNA cloning and sequencing for verification. The ROC and respective AUC were calculated for KRAS mutations and/or serum CA 19-9. Results: It was found that the sensitivity of Sanger reached 0.5% with COLD-PCR, whereas that obtained after conventional PCR did 20%; that of COLD-PCR based on unlabeled-probe HRM, 0.1%. KRAS mutations were identified in 26 of 36 PA cases (72.2%), while none were detected in the disease control and/or healthy group. KRAS mutations were identified both in 26 PA tissues and plasma samples. The AUC of COLD-PCR based unlabeled probe HRM turned out to be 0.861, which when combined with CA 19-9 increased to 0.934. Conclusions: It was concluded that COLD-PCR with unlabeled-probe HRM can be a sensitive and accurate screening technique to detect KRAS codon 12 and 13 mutations in plasma-circulating DNA for diagnosing and treating PA.

DNA·RNA Heteroduplex Containing 8-Oxo-7,8-dihydroguanosine: Base Pairing, Structures, and Thermodynamic Stability

  • Kim, Sang-Kook;Lee, Sung-Hwa;Kwon, Oh-Shin;Moon, Byung-Jo
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.657-662
    • /
    • 2004
  • Oligoribonucleotides containing 8-oxo-7,8-dihydroguanosine (8-oxoG) and 8-oxo-7,8-dihydro-2'-O-methylguanosine (8-oxoG-Me) were synthesized. The base pairing properties of 8-oxoG and 8-oxoG-Me in oligoribonucleotide in cDNA synthesis by reverse transcriptases were studied. dCMP was preferentially incorporated into the site opposite 8-oxoG or 8-oxoG-Me than into other dNMPs. TMP and dCMP were inserted preferentially into sites opposite 8-oxoG or 8-oxoG by reverse transcriptases. HIV-RT did not incorporate TMP, but RAV2-RT incorporated 50% more TMP than dCMP into the site opposite 8-oxoG. In the site opposite 8-oxoG-Me TMP was substantially incorporated by HIV-RT or RAV2-RT. Thermodynamic analysis of the DNA. RNA heteroduplex containing 8-oxoG revealed that 8-oxoG and 8-oxoG-Me formed base pairs with cytidine and thymidine with similar stability. The thermodynamic parameter (${\Delta}G^{\circ}$) demonstrated that the formation of duplexes between 8-oxoG or 8-oxoG-Me and cytidine or thymidine is more thermodynamically favorable than with adenosine and guanosine. However, differences in the melting temperature and ${\Delta}G^{\circ}$'s of 8-oxoG/dC and 8-oxoG/T were much smaller than between G/dC and G/T. CD spectra showed that DNA . RNA containing 8-oxoG or 8-oxoG-Me duplexes showed similarities between the A-type RNA and B-type DNA conformations.

Simple Screening Method for Double-strand DNA Binders Using Hairpin DNA-modified Magnetic Beads

  • Jo, Hun-Ho;Min, Kyoung-In;Song, Kyung-Mi;Ku, Ja-Kang;Han, Min-Su;Ban, Chang-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.247-250
    • /
    • 2011
  • We designed an effective screening method for double strand DNA (dsDNA) binders using DNA-modified magnetic particles. Hairpin DNA was immobilized on the surface of magnetic particle for a simple screening of dsDNA binding materials in a solution containing various compounds. Through several magnetic separation and incubation processes, four DNA-binding materials, DAPI, 9AA, AQ2A, and DNR, were successfully screened from among five candidates. Efficiency of screening was demonstrated by HPLC analysis using a C2/18 reverse-phase column. In addition, their relative binding strengths were verified by measuring the melting temperature ($T_m$). If hairpin DNA sequence is modified for other uses, this magnetic bead-based approach can be applied as a high-throughput screening method for various functional materials such as anti-cancer drugs.

Practical application of the Bar-HRM technology for utilization with the differentiation of the origin of specific medicinal plant species (약용식물의 기원 판별을 위한 Bar-HRM 분석기술의 응용)

  • Kim, Yun-Hee;Shin, Yong-Wook;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • The advent of available DNA barcoding technology has been extensively adopted to assist in the reference to differentiate the origin of various medicinal plants species. However, this technology is still far behind the curve of technological advances to be applied in a practical manner in the market to authenticate the counterfeit components or detect the contamination in the admixtures of medicinal plant species. Recently, a high resolution melting curve analysis technique was combined with the procedure of DNA barcoding (Bar-HRM) to accomplish this purpose. In this review, we tried to summarize the current development and bottleneck of processing related to the Bar-HRM technology for the practical application of medicinal plant species' differentiation in a viable global market. Although several successful results have been reported, there are still many obstacles to be resolved, such as limited number of DNA barcodes and single nucleotide polymorphisms, in particular, only one DNA barcode, internal transcribed sequence (ITS) of ribosomal DNA has been reported in the available nuclear genome. In addition, too few cases have been reported about the identification of counterfeit or contamination with processed medicinal plant products, in particular specifically the case of technology based infusion, jam and jelly products and components in which it is noted that DNA can be thereby degraded during the processing of these products and components.