DOI QR코드

DOI QR Code

Simple Screening Method for Double-strand DNA Binders Using Hairpin DNA-modified Magnetic Beads

  • Jo, Hun-Ho (Department of Chemistry, Pohang University of Science and Technology) ;
  • Min, Kyoung-In (Department of Chemistry, Pohang University of Science and Technology) ;
  • Song, Kyung-Mi (Department of Chemistry, Pohang University of Science and Technology) ;
  • Ku, Ja-Kang (Department of Chemistry, Pohang University of Science and Technology) ;
  • Han, Min-Su (Department of Chemistry, Chuang-Ang University) ;
  • Ban, Chang-Ill (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2010.10.13
  • Accepted : 2010.11.16
  • Published : 2011.01.20

Abstract

We designed an effective screening method for double strand DNA (dsDNA) binders using DNA-modified magnetic particles. Hairpin DNA was immobilized on the surface of magnetic particle for a simple screening of dsDNA binding materials in a solution containing various compounds. Through several magnetic separation and incubation processes, four DNA-binding materials, DAPI, 9AA, AQ2A, and DNR, were successfully screened from among five candidates. Efficiency of screening was demonstrated by HPLC analysis using a C2/18 reverse-phase column. In addition, their relative binding strengths were verified by measuring the melting temperature ($T_m$). If hairpin DNA sequence is modified for other uses, this magnetic bead-based approach can be applied as a high-throughput screening method for various functional materials such as anti-cancer drugs.

Keywords

References

  1. Shoemaker, R. H. Nat. Rev. Cancer. 2006, 6, 813-823. https://doi.org/10.1038/nrc1951
  2. O’Connor, P. M.; Jackman, J.; Bae, I.; Myers, T. G.; Fan, S.; Mutoh, M.; Scudiero, D. A.; Monks, A.; Sausville, E. A.; Weinstein, J. N.; Friend, S.; Fornace, A. J. Jr.; Kohn, K. W. Cancer Res. 1997, 57, 4285-4300.
  3. Levin, M. A.; Ittman, M.; Melamed, J.; Lepor, H. J. Urol. 2005, 159, 471-475. https://doi.org/10.1016/S0022-5347(01)63951-X
  4. Yan, Y. K.; Melchart, M.; Habtemariam, A.; Sadler, P. J. Chem. Commun. 2005, 38, 4764-4776.
  5. Ohmori, T.; Podack, E. R.; Nishio, K.; Takahashi, M.; Miyahara, Y.; Takeda, Y.; Kubota, N.; Funayama, Y.; Ogasawara, H.; Ohira, T.; Ohta, S.; Saijo, N. Biochem. Biophys. Res. Commun. 1993, 192, 30-36. https://doi.org/10.1006/bbrc.1993.1377
  6. Suh, M.-E.; Park, S.-Y.; Lee, H.-J. Bull. Korean Chem. Soc. 2002, 23, 417-422. https://doi.org/10.5012/bkcs.2002.23.3.417
  7. Ol’shevskaya, V. A.; Zaytsev, A. V.; Savchenko, A. N.; Shtil, A. A.; Cheong, C. S.; Kalinin, V. N. Bull. Korean Chem. Soc. 2007, 28, 1910-1916. https://doi.org/10.5012/bkcs.2007.28.11.1910
  8. Yang, X. L.; Wang, A. H. J. Pharmacol. Ther. 1999, 83, 181-215. https://doi.org/10.1016/S0163-7258(99)00020-0
  9. Bailly, C.; Denny, W. A.; Mellor, L. E.; Wakelin, L. P. G.; Waring, M. J. Biochemistry 1992, 31, 3514-3524. https://doi.org/10.1021/bi00128a028
  10. Richards, A. D.; Rodgers, A. Chem. Soc. Rev. 2007, 36, 471-483. https://doi.org/10.1039/b609495c
  11. Hamy, F.; Albrecht, G.; Florsheimer, A.; Bailly, C. Biochem. Biophys. Res. Commun. 2000, 270, 393-399. https://doi.org/10.1006/bbrc.2000.2437
  12. Olmsted, J., III.; Kearns, D. R. Biochemistry 1977, 16, 3647-3654. https://doi.org/10.1021/bi00635a022
  13. Chu, T. C.; Marks, J. W., III.; Lavery, L. A.; Faulkner, S.; Rosenblum, M. G.; Ellington, A. D.; Levy, M. Cancer Res. 2006, 66, 5989-5992. https://doi.org/10.1158/0008-5472.CAN-05-4583
  14. Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.; Kantoff, P. W.; Richie, J. P.; Langer, R. Proc. Natl. Acad. Sci. USA 2006, 103, 6315-6320. https://doi.org/10.1073/pnas.0601755103
  15. Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D.; Prato, M.; Bianco, A.; Kostarelos, K. Chem. Commun. 2008, 4, 459-461.
  16. Huang, Y. F.; Shangguan, D. H.; Liu, H. P.; Phillips, J. A.; Zhang, X. L.; Chen, Y.; Tan, W. H. ChemBioChem 2009, 10, 862-868. https://doi.org/10.1002/cbic.200800805
  17. Muller, I.; Jenner, A.; Bruchelt, G.; Niethammer, D.; Halliwell, B. Biochem. Biophys. Res. Commun. 1997, 230, 254-257. https://doi.org/10.1006/bbrc.1996.5898
  18. Lee, C. J.; Kang, J. S.; Kim, M. S.; Lee, K. P.; Lee, M. S. Bull. Korean Chem. Soc. 2004, 25, 1211-1216. https://doi.org/10.5012/bkcs.2004.25.8.1211
  19. Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555-600. https://doi.org/10.1021/cr9402081
  20. Balkenhohl, F.; von dem Bussche-Hunnefeld, C.; Lansky, A.; Zechel, C. Angew. Chem. 1996, 108, 2436-2487. https://doi.org/10.1002/ange.19961082004
  21. Boger, D. L.; Fink, B. E.; Hedrick, M. P. J. Am. Chem. Soc. 2000, 122, 6382-6394. https://doi.org/10.1021/ja994192d
  22. Nesterenko, V.; Putt, K. S.; Hergenrother, P. J. J. Am. Chem. Soc. 2003, 125, 14672-14673. https://doi.org/10.1021/ja038043d
  23. Hofstadler, S. A.; Griffey, R. H. Chem. Rev. 2001, 101, 377-390. https://doi.org/10.1021/cr990105o
  24. Robinson, H.; Priebe, W.; Chaires, J. B.; Wang, A. H.-J. Biochemistry 1997, 36, 8663-8670. https://doi.org/10.1021/bi970842j
  25. Pasternack, R. F.; Bustamante, C.; Collings, P. J.; Giannetto, A.; Gibbs, E. J. J. Am. Chem. Soc. 1993, 115, 5393-5399. https://doi.org/10.1021/ja00066a006
  26. Li, C.-Z.; Liu, Y.; Luong, J. H. T. Anal. Chem. 2005, 77, 478-485. https://doi.org/10.1021/ac048672l
  27. Wyatt, E. E.; Galloway, W. R. J. D.; Thomas, G. L.; Welch, M.; Loiseleur, O.; Plowright, A. T.; Spring, D. R. Chem. Commun. 2008, 40, 4962-4964.
  28. Mitchison, T. J. ChemBioChem 2005, 6, 33-39. https://doi.org/10.1002/cbic.200400272
  29. Han, M. S.; Lytton-Jean, A. K. R.; Mirkin, C. A. J. Am. Chem. Soc. 2006, 128, 4954-4955. https://doi.org/10.1021/ja0606475
  30. Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2006, 45, 1807-1810. https://doi.org/10.1002/anie.200504277
  31. Safarik, I.; Safarikova, M. BioMag. Res. Tech. 2004, 2, 1-7. https://doi.org/10.1186/1477-044X-2-1
  32. Perez, J. M.; O’Loughin, T.; Simeone, F. J.; Weissleder, R.; Josephson, L. J. Am. Chem. Soc. 2002, 124, 2856–2857.
  33. Wochner, A.; Cech, B.; Menger, M.; Erdmann, V. A.; Glokler, J. BioTechniques 2007, 43, 343-353.
  34. Stoeva, S. I.; Lee, J.-S.; Thaxton, C. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2006, 45, 3303-3306. https://doi.org/10.1002/anie.200600124
  35. Tse, W. C.; Boger, D. L. Acc. Chem. Res. 2004, 37, 61-69. https://doi.org/10.1021/ar030113y
  36. Reha, D.; Kabelac, M.; Ryjacek, F.; Sponer, J.; Sponer, J. E.; Elstner, M.; Suhai, S.; Hobza, P. J. Am. Chem. Soc. 2002, 124, 3366-3376. https://doi.org/10.1021/ja011490d
  37. Antonini, I.; Polucci, P.; Jenkins, T. C.; Kelland, L. R.; Menta, E.; Pescalli, N.; Stefanska, B.; Mazerski, J.; Martelli, S. J. Med. Chem. 1997, 40, 3749-3755. https://doi.org/10.1021/jm970114u
  38. Huang, Q.; Fu, W. L. Clin. Chem. Lab. Med. 2005, 43, 841-842. https://doi.org/10.1515/CCLM.2005.141

Cited by

  1. Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2217