• Title/Summary/Keyword: DNA extraction method

Search Result 170, Processing Time 0.031 seconds

Comparison of Various DNA Extraction Methods for Diagnosis of Tuberculosis Using a Polymerase Chain Reaction (중합효소연쇄반응을 이용한 결핵의 진단에 있어서 각종 DNA 추출방법의 비교)

  • Kim, Ju-Ock;Han, Pyo-Seong;Hong, Seok-Cheol;Lee, Jong-Jin;Cho, Hai-Jeong;Kim, Sun-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Background: The polymerase chain reaction (PCR) is a very sensitive method for the detecting of mycobacterial DNA. There are many reports revealing the efficacy of PCR for the diagnosis of M. tuberculosis, but there are many different methods for DNA extraction from Mycobacterium tuberculosis. Bead beater method is a very useful method for DNA extraction from clinical spectimens, but its procedures are relatively complicated and time-consuming. So we studied other methods for the DNA extraction from Mycobacterium tuberculosis $H_{37}Rv$ and some clinical specimens (5 smear positive sputa and 5 smear negative CSF). Method: We extracted the mycobacterial DNA with 6 different methods from H37Rv strain and clinical specimens. The methods included SDS-microwave oven method, NaOH lysis method, Triton X-100-Proteinase K method, Lysis buffer method, SDS-proteinase K method and bead beater method. The target DNA was 123bp of IS6110 and was detected by examination of ethidium bromide-stained agarose gels. Results: Among 6 methods, SDS-proteinase K method, bead beater method, lysis buffer method and triton X-100-proteinase K method were excellent, but SDS-proteinase K method was the best method in the aspect of simplicity and cost-effectiveness. Conclusion: We suggest that SDS-porteinase K method is a simple and convinient method and might be the best method for the extraction of mycobacterial DNA.

  • PDF

Comparison of Two Methods to Extract DNA from Formalin-Fixed, Paraffin-Embedded Tissues and their Impact on EGFR Mutation Detection in Non-small Cell Lung Carcinoma

  • Hu, Yu-Chang;Zhang, Qian;Huang, Yan-Hua;Liu, Yu-Fei;Chen, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2733-2737
    • /
    • 2014
  • Objective: Molecular pathology tests are often carried for clinicopathological diagnosis and pathologists have established large collections of formalin-fixed, paraffin-embedded tissue (FFPE) banks. However, extraction of DNA from FFPE is a laborious and challenging for researchers in clinical laboratories. The aim of this study was to compare two widely used DNA extraction methods: using a QIAamp DNA FFPE kit from Qiagen and a Cobas Sample Preparation Kit from Roche, and evaluated the effect of the DNA quality on molecular diagnostics. Methods: DNA from FFPE non-small cell lung carcinoma tissues including biopsy and surgical specimens was extracted with both QIAamp DNA FFPE and Cobas Sample Preparation Kits and EGFR mutations of non-small cell lung carcinomas were detected by real-time quantitative PCR using the extracted DNA. Results and Conclusion: Our results showed that DNA extracted by QIAamp and Cobas methods were both suitable to detect downstream EGFR mutation in surgical specimens. Howover, Cobas method could yield more DNA from biopsy specimens, and gain much better EGFR mutation results.

Optimization of DNA Extraction and PCR Conditions for Fungal Metagenome Analysis of Atmospheric Particulate Matter (대기 입자상물질 시료의 곰팡이 메타게놈 분석을 위한 DNA 추출 및 PCR 조건 최적화)

  • Sookyung Kang;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.99-108
    • /
    • 2023
  • Several challenges arise in DNA extraction and gene amplification for airborne fungal metagenome analysis from a particulate matter (PM) samples. In this study, various conditions were tested to optimize the DNA extraction method from PM samples and polymerase chain reaction (PCR) conditions with primer set and annealing temperature. As a result of comparative evaluation of DNA extraction under various conditions, chemical cell lysis using buffer and proteinase K for 20 minutes and bead beating treatment were followed by using a commercial DNA extraction kit to efficiently extract DNA from the PM filter samples. To optimize the PCR conditions, PCR was performed using 10 primer sets for amplifying the ITS2 gene region. The concentration of the PCR amplicon was relatively high when the annealing temperature was 58℃ with the ITS3tagmix3/ITS4 primer set. Even under these conditions, when the concentration of the PCR product was low, nested PCR was performed using the primary PCR amplicon as the template DNA to amplify the ITS2 gene at a satisfactory concentration. Using the methods optimized in this study, DNA extraction and PCR were performed on 15 filter samples that collected PM2.5 in Seoul, and the ITS2 gene was successfully amplified in all samples. The optimized methods can be used for research on analyzing and interpreting the fungal metagenome of atmospheric PM samples.

A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples (토양 및 퇴적토 환경 시료로부터 DNA 추출하는 방법에 대한 고찰)

  • Yoo, Keun-Je;Lee, Jae-Jin;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.57-67
    • /
    • 2009
  • In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose.

An Alternative Method for Extracting Plasmodium DNA from EDTA Whole Blood for Malaria Diagnosis

  • Seesui, Krongkaew;Imtawil, Kanokwan;Chanetmahun, Phimphakon;Laummaunwai, Porntip;Boonmars, Thidarut
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • Molecular techniques have been introduced for malaria diagnosis because they offer greater sensitivity and specificity than microscopic examinations. Therefore, DNA isolation methods have been developed for easy preparation and cost effectiveness. The present study described a simple protocol for Plasmodium DNA isolation from EDTA-whole blood. This study demonstrated that after heating infected blood samples with Tris-EDTA buffer and proteinase K solution, without isolation and purification steps, the supernatant can be used as a DNA template for amplification by PCR. The sensitivity of the extracted DNA of Plasmodium falciparum and Plasmodium vivax was separately analyzed by both PCR and semi-nested PCR (Sn-PCR). The results revealed that for PCR the limit of detection was $40parasites/{\mu}l$ for P. falciparum and $35.2parasites/{\mu}l$ for P. vivax, whereas for Sn-PCR the limit of detection was $1.6parasites/{\mu}l$ for P. falciparum and $1.4parasites/{\mu}l$ for P. vivax. This new method was then verified by DNA extraction of whole blood from 11 asymptomatic Myanmar migrant workers and analyzed by Sn-PCR. The results revealed that DNA can be extracted from all samples, and there were 2 positive samples for Plasmodium (P. falciparum and P. vivax). Therefore, the protocol can be an alternative method for DNA extraction in laboratories with limited resources and a lack of trained technicians for malaria diagnosis. In addition, this protocol can be applied for subclinical cases, and this will be helpful for epidemiology and control.

Establishment of Sample Preparation Method for PCR Detection of Clostridium perfringens from Agricultural Products (PCR 법을 이용한 농산물 중 Clostridium perfringens 검출을 위한 전처리법 확립)

  • Choi, Song-Yi;Seo, Min-Kyoung;Yoon, Jae-Hyun;Rajalingam, Nagendran;Hwang, Injun;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.93-99
    • /
    • 2021
  • This study was undertaken to compare the efficacy of different sample preparation (stomaching, pulsifying, and sonication) and DNA extraction methods (boiling and commercial kit) for detection of enterotoxin-producing Clostridium perfringens from produce by polymerase chain reaction (PCR). Each produce type was inoculated at concentrations of 102, 103, 104, 105, 106, and 107 spores/g. Produce inoculated with spores was treated with three sample preparation methods, and DNA was extracted by boiling method and a commercial kit, followed by PCR. The detection limit of stomached samples was lower than that of pummeled and sonicated samples by 10-100 times. Moreover, the DNA extraction efficiency of the commercial kit was found to be superior to that of boiling. In particular, the PCR efficiency of cherry tomato and perilla leaf samples was greatly affected by sample preparation and DNA extraction method. These data suggest that DNA extraction with a commercial kit after pulsification is an optimum sample preparation method for detection of C. perfringens by PCR.

A Simple and ]Reliable Method for PCR-Based Analyses in Plant Species Containing High Amounts of Polyphenols (Polyphenol 고함유 식물의 간편 PCR 분석)

  • 유남희;백소현;윤성중
    • Korean Journal of Plant Resources
    • /
    • v.14 no.3
    • /
    • pp.235-240
    • /
    • 2001
  • Polymerase chain reaction (PCR) is used in a wide array of researches in plant molecular genetics and breeding. However, considerable time and cost are still required for the preparation of DNA suitable for reliable PCR results, especially in plant species containing high amounts of polyphenols. To reduce time and effort for PCR-based analysis, a simplified but reliable method was developed by a combinational employment of a simple and fast DNA extraction procedure and BLOTTO (Bovine Lacto Transfer Technique Optimizer) in reaction mixture. Genomic DNAs prepared by one-step extraction method from recalcitrant plant species such as Rubus coreanus, apple, grape and lettuce were successfully amplified by random primers in the reaction mixture containing 2 to 4% BLOTTO. Successful amplification of ${\gamma}$-TMT transgene in lettuce transformants by the specific primers was also achieved in the same condition, making rapid screening of positive transformants possible. Our results suggest that use of a simple DNA extraction procedure and incorporation of BLOTTO in reaction mixture in combination can reduce time and effort required for the analyses of a large number of germplasms and transformants by PCR-based techniques.

  • PDF

Rapid Extraction of DNA using Ion Exchange Resin for Early Detection of Mycobacterium tuberculosis by the Polymerase Chain Reaction (결핵균 PCR에서 이온교환수지를 이용한 신속한 DNA 분리)

  • Kim, Cheol-Min;Park, Seung-Kyu;Shon, Mal-Hyun;Song, Sun-Dae;Kim, Young;Jun, Eun-Sook;Son, Han-Chul;Jung, Byung-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Background: The extraction methods of DNA from clinical samples are the major obstacle to use the PCR(polymerase Chain Reaction) in routine labortary for early detection of M. tuberculosis. We tried to improve the extraction method of DNA from sputum for establishment of the PCR in routine labortary by reducing the possibility of cross contamination and performing it easily and safely. Methods: We used the $InstaGene^{TM}$ DNA extraction kit(BioRad Co.) using Chelex 100 ion exchange resin for preparation of DNA. We compared InstaGene method in 100 cases of sputum from proteinase K method which is known as the most commonly used method for DNA purification(Experiment 1). And we compared InstaGene method in 98 cases of sputum from Microwave method developed by a company in Korea(Experiment 2). In experiment 1,245bps of IS6110 were amplified and then 188bps were amplified by nested PCR. In experiment 2,536bps in primary PCR and 276bps in nested PCR were amplified and analysed by agarose gel electrophoresis and EtBr staining. Results: When we chose AFB smear, culture, or AFB smear and culture as a standard test, PCR had low specificity and positive predictive value in both experiments. The InstaGene method has higher value in sensitivity and negative predictive value significantly than proteinase K method. The InstaGene method and the Microwave methods were similar in sensitivity, specificity, positive predictive value and negative predictive value. Conclusion: Even though both methods had lower possibility of cross contamination, shorter time requirement, simplicity, and economic advantages than Proteinase K method, the InstaGene method was a little simpler than the Microwave method. Therefore, in terms of usefulness in clinical application, the Instagene method seems to be the most useful method in DNA extraction for detection of M. tuberculosis using PCR. The reliability of this method will be clarified by further studies with enough clinical samples.

  • PDF

A Rapid and Simple Method for DNA Preparation of Magnaporthe oryzae from Single Rice Blast Lesions for PCR-Based Molecular Analysis

  • Liying, Dong;Shufang, Liu;Jing, Li;Didier, Tharreau;Pei, Liu;Dayun, Tao;Qinzhong, Yang
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.679-684
    • /
    • 2022
  • Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae.

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.