• Title/Summary/Keyword: DNA data

Search Result 2,037, Processing Time 0.027 seconds

NMR and Fluorescence Studies of DNA Binding Domain of INI1/hSNF5

  • Lee, Dongju;Moon, Sunjin;Yun, Jihye;Kim, Eunhee;Cheong, Chaejoon;Lee, Weontae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2753-2757
    • /
    • 2014
  • INtegrase Interactor 1 protein (INI1/hSNF5) or BRG1-associated factor 47 (BAF47) is a SWI/SNF-related matrix associated actin dependent regulator of chromatin subfamily B member. DNA binding domain of INI1/hSNF5 is cloned into E.coli expression vectors, pET32a and purified as a monomer using size exclusion chromatography. NMR data show that $INI1^{DBD}$ has folded state with high population of ${\alpha}$-helices. By fluorescence-quenching experiments, binding affinities between $INI1^{DBD}$ and two double stranded DNA fragments were determined as $29.9{\pm}2.6{\mu}M$ (GAL4_1) and $258.7{\pm}5.8$ (GAL4_2) ${\mu}M$, respectively. Our data revealed that DNA binding domain of INI1/hSNF5 binds to transcriptional DNA sequences, and it could play an important role as a transcriptional regulator.

Novel Method for DNA-Based Elliptic Curve Cryptography for IoT Devices

  • Tiwari, Harsh Durga;Kim, Jae Hyung
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.396-409
    • /
    • 2018
  • Elliptic curve cryptography (ECC) can achieve relatively good security with a smaller key length, making it suitable for Internet of Things (IoT) devices. DNA-based encryption has also been proven to have good security. To develop a more secure and stable cryptography technique, we propose a new hybrid DNA-encoded ECC scheme that provides multilevel security. The DNA sequence is selected, and using a sorting algorithm, a unique set of nucleotide groups is assigned. These are directly converted to binary sequence and then encrypted using the ECC; thus giving double-fold security. Using several examples, this paper shows how this complete method can be realized on IoT devices. To verify the performance, we implement the complete system on the embedded platform of a Raspberry Pi 3 board, and utilize an active sensor data input to calculate the time and energy required for different data vector sizes. Connectivity and resilience analysis prove that DNA-mapped ECC can provide better security compared to ECC alone. The proposed method shows good potential for upcoming IoT technologies that require a smaller but effective security system.

Studies on the Organization and Transcription of Aspergillus nidulans tRNA Genes (Aspergillus nidulans의 tRNA 유전자의 구성과 발현에 관한 연구 II. Aspergillus nidulans 총 tRNA 유전자의 cloning)

  • 이병재;강현삼
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 1983
  • Total tRNA genes from Aspergillus nidulans were cloned for the further investigation of the structure and expression of Aspergillus tRNA genes. Aspergillus DNA was isolated from spores and cloned into pBR322 plasmid DNA using BamHI and $T_4$ ligase. The recombinant hybrid DNA was transformed into E. coli HB101 and some 30,000 transformants were initially selected. Of these, about 5,300 E. coli clones containing Aspergillus DNA inserted into plasmid pBR322 at BamHl site have been isolated. The hybridization data obtained from the labeled Aspergillus $^{32}P-tRNA$ indicated that 105 colonies carried the total tRNA genes. From the data above and cohybridization experiment, tRNA genes of Aspergillus nidulans seem to be twice more clustered than those of yeast.

  • PDF

Mutation Cases in the Korean Population using 23 Autosomal STR Loci Analysis

  • Kim, Jeongyong;Kim, Hyojeong;Lee, Ja Hyun;Kim, Hyo Sook;Kim, Eungsoo
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.105-110
    • /
    • 2021
  • Short Tandem Repeats (STR) analysis which characterized by genetic polymorphism has been widely used in the forensic genetic fields. Unfortunately, mutation occurred in various STR loci could make it difficult to interpret STR data. Thus, the mutation rate of STR loci plays an important role for the data interpretation in human identification and paternity test. To verify the mutation of the STR loci in the Korean population, 545 trio sets (father, mother, and child) were analyzed with two commercial STR kits that include the 23 autosomal STR loci (D1S1656, TPOX, D2S441, D2S1338, D3S1358, FGA, D5S818, CSF1PO, D7S820, D8S1179, D10S1248, TH01, D12S391, VWA D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, SE33, Penta E and Penta D). As a result, 36 mutations were observed in 14 STR loci. The types of mutation were also classified by the increase or decrease of the alleles. The overall mutation rate was 1.4×10-3, and the paternal mutation rate was four times higher than that of the maternal. This study will provide more detailed criterion for human identification by the mutation rate of STR loci in the Korean population.

Unification System for Analysis of DNA Sequence (DNA 서열 분석을 위한 통합 시스템)

  • Song, Young-Ohk;Chang, Duk-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • We stand at real world that some practical use method of gene information appears in succession by entrance on the stage of advanced techonlogy. As a lot of studies and development are achieved based on analysis of bio data, necessity of a tool that can help correct interpretation of data is required more and more in a lot of targets of bioinformatics to search new relation and information are established. In this paper, we are offered in existing I wish to offer user a more convenient study tool developing system that can supplement shortcomings of various tools for data analysis. So we've designed to offer in united environment that is not environment that is parted ORF driving out, bio information retrieval and work of similarity comparison lamp to work for bio data analysis and offers lacking consecutiveness in existing analysis system.

Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

  • Chelomina, Galina N.;Rozhkovan, Konstantin V.;Voronova, Anastasia N.;Burundukova, Olga L.;Muzarok, Tamara I.;Zhuravlev, Yuri N.
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.176-184
    • /
    • 2016
  • Background: Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods: The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results: In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion: This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

A Study of a Biological Information Processing for DNA Microarray Expression Data (DNA Microarray 발현정보에 대한 생물학적 정보처리에 관한 연구)

  • Jo, Yeong-Im;Jeong, Hyeon-Cheol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.149-152
    • /
    • 2007
  • 본 논문은 바이오 인포메틱스의 분야를 간단히 소개하고 기능유전체학에서 microarray 실험에 대한 통계적 방법론을 살펴보고자 한다. 또한 DNA chip 설계와 생물학적 특정에 대해 살펴보고 각 분야에서 적용되는 통계적 방법을 연구분석 해보고자 한다.

  • PDF

A Major DNA Marker Mining of microsatellite loci in Hanwoo Chromosome 17

  • Lee, Yong-Won;Lee, Je-Yeong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.54-58
    • /
    • 2005
  • 한우 17번 염색체 유전자 지도에서 QTL (quantitative trait loci) 분석을 실시하여 선별된 Loci 값들을 순열검정(Permutation Test)을 이용하여 유의성 검정을 실시하였다. 한편, 우수 경제형질 DNA marker들을 K-평균 군집법을 실시 파악하였다. 또한, 부스트랩 방법을 이용하여 선별된 Locus의 DNA Marker들의 신뢰구간을 구하였다. 이들 QTL과 K-평균법, 부스트랩 방법에 의해 한우의 염색체 17번 BMS941의 우수 DNA Marker 85, 105번을 선별하였다.

  • PDF

A Visualization Tool for Computational Analysis of DNA Methylation Level Using Bisulfite Sequencing Data

  • Tae, Hong-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.136-137
    • /
    • 2011
  • Methylation of cytosine is a post-synthesis modification that does not affect the primary DNA sequence but greatly influences gene expression level and phenotypes of an organism. As high-throughput sequencing of bisulfite-treated DNA is the most efficient method to identify methylated sites, several tools to map sequencing reads on a reference are available. But tools to visualize and to interpret the methylation level of methylation sites are currently insufficient. Herein, we present a novel tool to visualize the methylation level of CpG sites.

Oligomer Probe Sequence Design System in DNA Chips for Mutation Detection

  • Lee, Kyu-Sang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.87-96
    • /
    • 2001
  • 삼성종합기술원에서는 인간의 genomic DNA의 이상을 발견하여 이와 연관된 질병을 진단하는 DNA chip을 개발하고 있다. 이를 위하여 특정한 염기서열의 변화에 따라 민감하게 hybridization strength가 변화하는 oligomer를 선택해야 한다. 따라서, specificity가 가장 큰 probe를 골라내야 한다. 여기에는 열역학적인 고려와 여러가지 물리화학적인 approximation이 사용되며, DNA chip 생산 공정에 의존하는 요소도 포함되어 있다 모든 생산용 data와 결과의 분석은 database를 기반으로 이루어지며, 자동화된 통계적 분석법과 최적화 방법이 함께 사용된다.

  • PDF