• Title/Summary/Keyword: DNA chip

Search Result 361, Processing Time 0.034 seconds

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.

Electrochemical Detection of Genes Using Microeledtrode Array DNA Chip (미소전극어에이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2125-2127
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

SNP Detection of Biochip Using Electrochemical System (전기화학적 방법에 의한 바이오칩의 SNP 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2128-2130
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Applying Particle Swarm Optimization for Enhanced Clustering of DNA Chip Data (DNA Chip 데이터의 군집화 성능 향상을 위한 Particle Swarm Optimization 알고리즘의 적용기법)

  • Lee, Min-Soo
    • The KIPS Transactions:PartD
    • /
    • v.17D no.3
    • /
    • pp.175-184
    • /
    • 2010
  • Experiments and research on genes have become very convenient by using DNA chips, which provide large amounts of data from various experiments. The data provided by the DNA chips could be represented as a two dimensional matrix, in which one axis represents genes and the other represents samples. By performing an efficient and good quality clustering on such data, the classification work which follows could be more efficient and accurate. In this paper, we use a bio-inspired algorithm called the Particle Swarm Optimization algorithm to propose an efficient clustering mechanism for large amounts of DNA chip data, and show through experimental results that the clustering technique using the PSO algorithm provides a faster yet good quality result compared with other existing clustering solutions.

Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo;Nam, Yun-Suk;Masamichi Fujihira
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.76-85
    • /
    • 2004
  • Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

Genome Detection Using Hoechst 33258 Groove Binder (Hoechst 33258 Groove Binder를 이용한 DNA칩)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.372-373
    • /
    • 2006
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

삼성 SDS의 Bioinformatics: 사업 및 연구/개발

  • 정태수
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.151-163
    • /
    • 2001
  • - Overview of Bioinformatics and vision of Samsung SDS on it - Overview of Bio Chip and its market - Product roadmap with "Expert system for DNA chip data " - "UniBIO "as an integrated package of DNA chip data analysis - Demo of UniBIO

  • PDF

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.

Development of DNA Chip System for Differential Diagnosis of Porcine Enteric Pathogens

  • Kim, Tae-ju;Cho, Ho-seong;Kim, Yong-hwan;A.W.M. Effendy;Park, Nam-yong
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.32-32
    • /
    • 2003
  • Intestinal infections are common in growing pigs and can be caused by multiple pathogens, environmental and management factors [1]. Among the most important viruses in swine enteritis are porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine enteric calicivirus (PECV), porcine group A rotavirus (PRV gp A) and bacteria are Escherichia coli and Salmonella spp. and protozoa is Isospora suis [1]. The DNA chip system can serve as a powerful tool that can be utilized for simultaneous detection of specific pathogenic bacteria strains and viruses [2,3]. The combination of PCR and DNA chip technology will provide a novel method for the detection of porcine enteric pathogens thus revolutionize the diagnosis and management of the disease. The aim of this study is to develop DNA chip system for the rapid and reliable detection of five major porcine enteric pathogens based on oligonucleotide DNA chip hybridization. (omitted)

  • PDF