• Title/Summary/Keyword: DNA binding proteins

Search Result 315, Processing Time 0.036 seconds

Regulatory Mechanism in Tissue-specific Expression of Insulin-like Growth Factor-I Gene (Insulin-like growth factor-I 유전자의 조직 특이적 발현에 대한 조절기전)

  • 안미라
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.329-334
    • /
    • 2003
  • The present study was aimed at investigating the regulatory mechanism in tissue-specific expression of insulin-like growth factor-I (IGF-I) gene. The expression of IGF-I gene was determined by a solution hybridization/RNase protection assay using total RNA prepared from rat liver or brain of various ages. The levels of IGF-I transcripts were increased in liver gradually after birth, but decreased in brain. By using an oligonucleotide (FRE) corresponding to the C/EBP binding site of the rat IGF-I exon 1, multiple forms of C/EBP${\alpha}$ and C/EBP${\beta}$ proteins, which have DNA-binding activity, were detected in the rat liver or brain. Western immunoblot and southwestern analyses show that p42$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\alpha}$/, p35$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\beta}$/, and p35$\^$C/EBP${\beta}$ form specific complexes with the IGF-I exon 1 oligonucleotide in liver nuclear extract and that p42$\^$C/EBP${\alpha}$/ and p38$\^$C/EBP${\beta}$/ form complexes in brain. These data suggest that the formation of FRE-C/EBP isoform complexes may play important roles in the tissue-specific regulation of IGF-I gene expression.

Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, Patrick C.
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol (GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fischer rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Zebrafish Dnd protein binds to 3'UTR of geminin mRNA and regulates its expression

  • Chen, Shu;Zeng, Mei;Sun, Huaqin;Deng, Wenqian;Lu, Yilu;Tao, Dachang;Liu, Yunqiang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.438-444
    • /
    • 2010
  • Dnd (dead end) gene encodes an RNA binding protein and is specifically expressed in primordial germ cells (PGCs) as a vertebrate-specific component of the germ plasma throughout embryogenesis. By utilizing a technique of specific nucleic acids associated with proteins (SNAAP), 13 potential target mRNAs of zebrafish Dnd (ZDnd) protein were identified from 8-cell embryo, and 8 target mRNAs have been confirmed using an RT-PCR analysis. Of the target mRNAs, the present study is focused on the regulation of geminin, which is an inhibitor of DNA replication. Using electrophoretic mobility shift assay (EMSA), we demonstrated that ZDND protein bound the 67-nucleotide region from 864 to 931 in the 3'UTR of geminin mRNA, a sequence containing 60.29% of uridine. Results from a dual-luciferase assay in HEK293 cells showed that ZDND increases the translation of geminin. Taken together, the identification of target mRNA for ZDnd will be helpful to further explore the biological function of Dnd in zebrafish germ-line development as well as in cancer cells.

Identification and Molecular Characterization of Parkin in Clonorchis sinensis

  • Bai, Xuelian;Kim, Tae Im;Lee, Ji-Yun;Dai, Fuhong;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to $Zn^{2+}$ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.

Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L.

  • Phean-o-pas, Srivilai;Punteeranurak, Pornpimon;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.432-439
    • /
    • 2005
  • $Ca^{2+}$/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of $Ca^{2+}$-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the calmodulin genes, OsCam1, OsCam2, and OsCam3 were sequenced. OsCam1 and OsCam2 encode a conventional 148-amino acid calmodulin protein that contains four characteristic $Ca^{2+}$-binding motifs. OsCam3 encode a similar protein with a 38-amino-acid extension containing a putative prenylation site (CVIL) at the carboxyl terminus. RT-PCR showed that each of the genes is expressed in leaves and roots of 2-week old rice seedlings. By RNA gel blot analysis, OsCam1 mRNA levels strongly increased in response to NaCl, mannitol and wounding treatments. In contrast, OsCam2 mRNA levels were relatively unchanged under all conditions investigated. NaCl treatment and wounding also increased the OsCam3 mRNA level, but in a more transient manner. Our results indicate that although the expression of genes encoding different calmodulin isoforms is ubiquitous, they are differentially regulated by various stress signals. In addition, we have demonstrated that the calcium-channel blocker lanthanum chloride inhibited the induction of OsCam1 gene expression by both NaCl and mannitol treatments. These results suggest that osmotic stress induced expression of OsCam1 gene requires the $[Ca^{2+}]_{cyt}$ elevation that is known to occur in response to these stimuli.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

Expression and Characterization of the Human Lactoferrin in the Milk of Transgenic Mice

  • Z. Y. Zheng;Y. M. Han;Lee, K. K.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.85-85
    • /
    • 2003
  • Human lactoferrin (hLF) is an 80 kDa iron-binding glycoprotein that is expressed in high concentration in milk and in lesser amount in the secondary or specific granules of neutrophils and in plasma, LF is classically considered to be related to the binding, transport, and storage of iron. The transgenic mice carrying the human hLF gene in conjunction with the bovine $\beta$-casein promoter produced the human hLF in their milk during lactation. To screen transgenic mice, PCR was carried out using chromosomal DNA extracted from tail or toe tissues. In this study, stability of germ line transmission and expression of hLF were monitored up to generation Fl7 of a transgenic line. When female mouse of generation F9 was crossbred with normal male, generation F9 to Fl7 mice showed similar transmission rates ($66.0 \pm 12.57%, 42.0 \pm 14.98%, 72.2 \pm 25.45%, 50.0 \pm 16.70%, 65.7 \pm 6.45%, 48.6 \pm 14.65%, 54 1 \pm 18 11%, 57.8 \pm 16.16% and 48.6 \pm 20.66$, respectively), implying that the hLF gene can be transmitted stably up to long term generation in the transgenic mice For ELISA analysis, hLF expression levels were determined with an hLF ELISA kit in accordance with the supplier's protocol. Expression levels of human hLF from milk of generation F9 to Fl3 mice were $ 3.2 \pm 0.69 mg/ml, 3.1 \pm 0.81 mg/ml, 4.6 \pm 1.38 mg/ml, 3.1 \pm 0.42 mg/ml, and 4.5 \pm 1,48 mg/ml$, respectively. These expression levels were lower than that of founder (6.6 mg/$m\ell$) mouse. We concluded that transgenic mice faithfully passed the transgene on their progeny and successively secreted target proteins into their milk through several generations.

  • PDF

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

A 100 kDa Protein Binding to bHLH Family Consensus Recognition Sequence of RAT p53 Promoter

  • Lee, Min-Hyung;Park, Sun-Hee;Song, Hai-Sun;Lee, Kyung-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.205-210
    • /
    • 1997
  • p53 tumor suppressor plays an important role in the regulation of cellular proliferation. To identify proteins regulating the expression of p53 in rat liver, we analyzed p53 promoter by electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay. We found that a protein binds the sequence CACGTG, bHLH consensus sequence in rat p53 promoter. Southwestern blotting analysis with oligonucleotides containing this sequence shows that the molecular weight of the protein is 100 kDa. This size is not compatible with the bHLH family such as USF or c-Myc/Max which is known to regulate the expression of the human and mouse p53 gene. Therefore this 100 kDa protein may be a new protein regulating basal transcription of rat p53. We purified this 100 kDa protein through sequence-specific DNA affinity chromatogaphy.

  • PDF