DOI QR코드

DOI QR Code

Identification and Molecular Characterization of Parkin in Clonorchis sinensis

  • Bai, Xuelian (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Kim, Tae Im (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Lee, Ji-Yun (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Dai, Fuhong (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Hong, Sung-Jong (Department of Medical Environmental Biology, Chung-Ang University College of Medicine)
  • Received : 2014.07.28
  • Accepted : 2014.12.06
  • Published : 2015.02.28

Abstract

Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to $Zn^{2+}$ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.

Keywords

References

  1. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY. Clonorchiasis: a key food-borne zoonosis in China. Lancet Infect Dis 2005; 5: 31-41. https://doi.org/10.1016/S1473-3099(04)01252-6
  2. Kim TI, Yoo WG, Kwak BK, Seok JW, Hong SJ. Tracing of the bile-chemotactic migration of juvenile Clonorchis sinensis in rabbits by PET-CT. PLoS Negl Trop Dis 2011; 5: e1414. https://doi.org/10.1371/journal.pntd.0001414
  3. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, Wiangnon S, Sripa B, Hong ST. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 2010; 101: 579-585. https://doi.org/10.1111/j.1349-7006.2009.01458.x
  4. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens-Part B: biological agents. Lancet Oncol 2009; 10: 321-322. https://doi.org/10.1016/S1470-2045(09)70096-8
  5. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 1998; 392: 605-608. https://doi.org/10.1038/33416
  6. Capili AD, Edghill EL, Wu K, Borden KL. Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J Mol Biol 2004; 340: 1117-1129. https://doi.org/10.1016/j.jmb.2004.05.035
  7. Morett E, Bork P. A novel transactivation domain in parkin. Trends Biochem Sci 1999; 24: 229-231. https://doi.org/10.1016/S0968-0004(99)01381-X
  8. Van der Reijden BA, Erpelinck-Verschueren CA, Lowenberg B, Jansen JH. TRIADs: a new class of proteins with a novel cysteine-rich signature. Protein Sci 1999; 8: 1557-1561. https://doi.org/10.1110/ps.8.7.1557
  9. Hristova VA, Beasley SA, Rylett RJ, Shaw GS. Identification of a novel $Zn^{2+}$-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem 2009; 284: 14978-14986. https://doi.org/10.1074/jbc.M808700200
  10. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science 2001; 293: 263-269. https://doi.org/10.1126/science.1060627
  11. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7: 1144-1150. https://doi.org/10.1038/nm1001-1144
  12. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KK, Kehoe K, D'Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B. SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 2003; 117: 179-189. https://doi.org/10.1016/S0169-328X(03)00318-8
  13. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell 2001; 105: 891-902. https://doi.org/10.1016/S0092-8674(01)00407-X
  14. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitine ligase complex and protects postmitotic neurons from kainite excitotoxicity. Neuron 2003; 37: 735-749. https://doi.org/10.1016/S0896-6273(03)00084-9
  15. Ren Y, Zhao J, Feng J. Parkin binds to ${\alpha}$/${\beta}$ tublin and increases their ubiquitination and degradation. J Neurosci 2003; 23: 3316-3324. https://doi.org/10.1523/JNEUROSCI.23-08-03316.2003
  16. Corti O, Hampe C, Koutnikova H, Darios F, Jacquier S, Prigent A, Robinson JC, Pradier L, Ruberg M, Mirande M, Hirsch E, Rooney T, Fournier A, Brice A. The p38 subunit of the aminoacyl-tRNA synthetase complex is a parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet 2003; 12: 1427-1437. https://doi.org/10.1093/hmg/ddg159
  17. Imai Y, Soda M, Takahashi R. Parkin supress unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000; 275: 35661-35664. https://doi.org/10.1074/jbc.C000447200
  18. Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T, Brice A, van Bergen En Henegouwen PM, Fon EA. A regulated interaction with the UIM protein Eps 15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signaling. Nat Cell Biol 2006; 8: 834-842. https://doi.org/10.1038/ncb1441
  19. Hebron ML, Lonskaya I, Sharpe K, Weerasinghe PP, Algarzae NK, Shekoyan AR, Moussa CE. Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J Biol Chem 2013; 288: 4103-4115. https://doi.org/10.1074/jbc.M112.419945
  20. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin deficient mice. J Biol Chem 2004; 279: 18614-18622. https://doi.org/10.1074/jbc.M401135200
  21. Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB, Eskelinen EL, Jaeschke H, Yin XM. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J Biol Chem 2012; 287: 42379-42388. https://doi.org/10.1074/jbc.M112.413682
  22. Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N. Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome 2000; 11: 417-421. https://doi.org/10.1007/s003350010080
  23. Bae YJ, Park KS, Kang SJ. Genomic organization and expression of parkin in Drosophila melanogaster. Exp Mol Med 2003; 35: 393-402. https://doi.org/10.1038/emm.2003.52
  24. Yoo WG, Kim DW, Ju JW, Cho PY, Kim TI, Cho SH, Choi SH, Park HS, Kim TS, Hong SJ. Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 2011; 5: e1208. https://doi.org/10.1371/journal.pntd.0001208
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  26. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013; 340: 1451-1455. https://doi.org/10.1126/science.1237908
  27. Nema V, Pal SK. Exploration of freely available web-interfaces for comparative homology modelling of microbial proteins. Bioinformation 2013; 9: 796-801. https://doi.org/10.6026/97320630009796
  28. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 2013; 30: 1229-1235. https://doi.org/10.1093/molbev/mst012
  29. Yoo WG, Kim TI, Li S, Kwon OS, Cho PY, Kim TS, Kim K, Hong SJ. Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 2009; 104: 321-328. https://doi.org/10.1007/s00436-008-1195-x
  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 2001; 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  31. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 2013; 4: 1982. https://doi.org/10.1038/ncomms2982
  32. Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, Kato K. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep 2003; 4: 301-306. https://doi.org/10.1038/sj.embor.embor764
  33. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H. Autoregulation of parkin activity through its ubiquitin-like domain. EMBO J 2011; 30: 2853-2867. https://doi.org/10.1038/emboj.2011.204
  34. Zheng X, Hunter T. Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism. Cell Res 2013; 23: 886-897. https://doi.org/10.1038/cr.2013.66
  35. Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011; 286: 19630-19640. https://doi.org/10.1074/jbc.M110.209338
  36. Okatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N. Mitochondrial hexokinase HKI is a novel substrate of the parkin ubiquitin ligase. Biochem Biophys Res Commun 2012; 428: 197-202. https://doi.org/10.1016/j.bbrc.2012.10.041
  37. Periquet M, Corti O, Jacquier S, Brice A. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 2005; 95: 1259-1276. https://doi.org/10.1111/j.1471-4159.2005.03442.x
  38. Jeong KH, Rim HJ. A study on the fine structure of Clonorchus sinensis, a liver fluke V. The mature spermatozoa. Korean J Parasitol 1984; 22: 30-36. https://doi.org/10.3347/kjp.1984.22.1.30
  39. Xiao JY, Lee JY, Tokuhiro S, Nagataki M, Jarilla BR, Nomura H, Kim TI, Hong SJ, Agatsuma T. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target. PLoS Negl Trop Dis 2013; 7: e2548. https://doi.org/10.1371/journal.pntd.0002548
  40. Hong SJ, Seong KY, Sohn WM, Song KY. Molecular cloning and immunological characterization of phosphoglycerate kinase from Clonorchis sinensis. Mol Biochem Parasitol 2000; 108: 207-216. https://doi.org/10.1016/S0166-6851(00)00220-6
  41. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003; 100: 4078-4083. https://doi.org/10.1073/pnas.0737556100
  42. Dehvari N, Sandebring A, Flores-Morales A, Mateos L, Chuan YC, Goldberg MS, Cookson MR, Cowburn RF, Cedazo-Minguez A. Parkin-mediated ubiquitination regulates phospholipase C-${\gamma}1$. J Cell Mol Med 2009; 13: 3061-3068. https://doi.org/10.1111/j.1582-4934.2008.00443.x
  43. Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 2011; 50: 3749-3763. https://doi.org/10.1021/bi200175q

Cited by

  1. Molecular and structural characteristics of multidrug resistance-associated protein 7 in Chinese liver fluke Clonorchis sinensis vol.116, pp.3, 2015, https://doi.org/10.1007/s00436-016-5371-0
  2. Characterization of a novel organic solute transporter homologue from Clonorchis sinensis vol.12, pp.4, 2015, https://doi.org/10.1371/journal.pntd.0006459