• Title/Summary/Keyword: DNA binding

Search Result 1,278, Processing Time 0.023 seconds

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

Kinetic analysis of Drosophila Vnd protein containing homeodomain with its target sequence

  • Yoo, Si-Uk
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.407-412
    • /
    • 2010
  • Homeodomain (HD) is a highly conserved DNA-binding domain composed of helix-turn-helix motif. Drosophila Vnd (Ventral nervous system defective) containing HD acts as a regulator to either enhance or suppress gene expression upon binding to its target sequence. In this study, kinetic analysis of Vnd binding to DNA was performed. The result demonstrates that DNA-binding affinity of the recombinant protein containing HD and NK2-specific domain (NK2-SD) was higher than that of the full-length Vnd. To access whether phosphorylation sites within HD and NK2-SD affect the interaction of the protein with the target sequence, alanine substitutions were introduced. The result shows that S631A mutation within NK2-SD does not contribute significantly to the DNA-binding affinity. However, S571A and T600A mutations within HD showed lower affinity for DNA binding. In addition, DNA-binding analysis using embryonic nuclear protein also demonstrates that Vnd interacts with other nuclear proteins, suggesting the existence of Vnd as a complex.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

In Vitro Selection of High Affinity DNA-Binding Protein Based on Plasmid Display Technology

  • Choi, Yoo-Seong;Joo, Hyun;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1022-1027
    • /
    • 2005
  • Based on plasmid display technology by the complexes of fusion protein and the encoding plasmid DNA, an in vitro selection method for high affinity DNA-binding protein was developed and experimentally demonstrated. The GAL4 DNA-binding domain (GAL4 DBD) was selected as a model DNA-binding protein, and enhanced green fluorescent protein (EGFP) was used as an expression reporter for the selection of target proteins. Error prone PCR was conducted to construct a mutant library of the model. Based on the affinity decrease with increased salt concentration, mutants of GAL4 DBD having high affinity were selected from the mutant protein library of protein-encoding plasmid complex by this method. Two mutants of (Lys33Glu, Arg123Lys, Ile127Lys) and (Ser47Pro, Ser85Pro) having high affinity were obtained from the first generation mutants. This method can be used for rapid in vitro selection of high affinity DNA-binding proteins, and has high potential for the screening of high affinity DNA-binding proteins in a sequence-specific manner.

Localization of F plasmid SopB protein and Gene silencing via protein-mediated subcellular localization of DNA

  • Kim Sook-Kyung;James C. Wang
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.15-23
    • /
    • 2000
  • The subcellular localization of the SopB protein, which is encoded by the Escherichia coli F plasmid and is involved in the partition of the single-copy plasmid, was directly visualized through the expression of the protein fused to the jellyfish green fluorescent protein (GFP). The fusion protein was found to localize to positions close but not at the poles of exponentially growing cells. Examination of derivatives of the fusion protein lacking various regions of SopB suggests that the signal for the cellular localization of SopB resides in a region close to its N terminus. Overexpression of SopB led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. In this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA -binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results suggest a mechanism of gene silencing: patches of closely packed DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA -binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA.

  • PDF

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • Kim, Moon-Soo;Kini, Anu Ganesh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.533-541
    • /
    • 2017
  • Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

NMR Study of Consensus DNA-binding Site for Arabidopsis thaliana Class I Transcription Factor AtTCP1

  • Choi, Yong-Geun;Kim, Hee-Eun;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • The TCP domain is a DNA-binding domain present in plant transcription factors and has a similar structural feature to the bHTH motif of eukaryotic transcription factors. The imino proton exchange study has been performed for the DNA duplex containing the consensus DNA-binding site for the AtTCP11 transcription factor. The first two base pairs in the consensus 5'-GTGGG-3' sequence are relatively very unstable but lead to greater stabilization of the neighboring two G C base pairs. These unique dynamic features of the five base pairs in the consensus DNA sequence might play crucial roles in the effective DNA binding of the AtTCP11 protein.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.

Binding Interactions of TMAP to Triple- and Double Helical DNA

  • Kim, Nan-Jung;Yoo, Sang-Heon;Huh, Sung-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.175-187
    • /
    • 2006
  • Binding interactions between a positively charged porphyrin derivative TMAP(meso-tetra(p-trimethylanilinium-4-yl)porphyrin) and triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, as well as double helical $(dA)_{12}{\cdot}(dT)_{12}$ have been studied with NMR, UV and CD spectroscopy to obtain the detailed information about the binding mode and binding site. UV melting studies showed both DNA duplex and triple helix represented very similar UV absorption patterns upon binding TMAP, but the presence of third strand of triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, inhibited improvement in thermal stability in terms of melting temperature, $T_m$. In addition, the TMAP molecule is thought to bind to the major groove, according to CD and NMR data. But absence of the clear isosbestic point in UV absorption spectra represented that binding of TMAP to DNA duplex as well as DNA triplex did not show a single binding mode, rather complex binding modes.

  • PDF