• Title/Summary/Keyword: DNA Structure

Search Result 995, Processing Time 0.036 seconds

Channel Capacity Analysis of DNA-based Molecular Communication with Length Encoding Mechanism

  • Xie, Jialin;Liu, Qiang;Yang, Kun;Lin, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2923-2943
    • /
    • 2021
  • The double helix structure of DNA makes it diverse, stable and can store information with high density, and these characteristics are consistent with the requirements of molecular communication for transport carriers. In this paper, a specific structure of molecular communication system based on DNA length coding is proposed. Transmitter (Tx) adopts the multi-layer golden foil design to control the release of DNA molecules of different lengths accurately, and receiver (Rx) adopts an effective and sensitive design of nanopore, and the biological information can be converted to the electric signal at Rx. The effect of some key factors, e.g., the length of time slot, transmission distance, the number of releasing molecules, the priori probability, on channel capacity is demonstrated exhaustively. Moreover, we also compare the transmission capacity of DNA-based molecular communication (DNA-MC) system and concentration-based molecular communication (MC) system under the same parameter setting, and the peak value of capacity of DNA-MC system can achieve 0.08 bps, while the capacity of MC system remains 0.025 bps. The simulation results show that DNA-MC system has obvious advantages over MC system in saving molecular resources and improving transmission stability.

Suffix Tree Constructing Algorithm for Large DNA Sequences Analysis (대용량 DNA서열 처리를 위한 서픽스 트리 생성 알고리즘의 개발)

  • Choi, Hae-Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • A Suffix Tree is an efficient data structure that exposes the internal structure of a string and allows efficient solutions to a wide range of complex string problems, in particular, in the area of computational biology. However, as the biological information explodes, it is impossible to construct the suffix trees in main memory. We should find an efficient technique to construct the trees in a secondary storage. In this paper, we present a method for constructing a suffix tree in a disk for large set of DNA strings using new index scheme. We also show a typical application example with a suffix tree in the disk.

Application of Structure-Switching Signaling Aptamers in DNA computing (DNA 컴퓨팅에서의 앱타머 구조 변환 활용 방안)

  • 김수동;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.838-840
    • /
    • 2003
  • 특정 단백질과 특이적으로 결합하는 핵산인 앱타머 (aptamer) 의 존재는, DNA 기반 컴퓨팅과 단백질 기반 컴퓨팅 사이에서 가교 역할을 할 수 있다는 가능성을 고려할 때 주목할 만하다. 본고에서는 전통적인 DNA 기반 컴퓨팅 방법론의 확장으로서, 앱타머 구조 변환의 활용 방안을 제안하였다.

  • PDF

NMR study of the interaction of T$_4$ Endonuclease V with DNA

  • 이봉진;유준석;임형미;임후강
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.267-267
    • /
    • 1994
  • In order to obtain insight into the mechanism by which DNA containing a thymine photo-dimer is recognized by the excision repair enzyme, T$_4$ endonuclease V, we have taken NMR study of this protein and its complex with oligonucleotides. The conformations of five different DNA duplexes DNA I : d(GCGGATGGCG).d(CGCCTACCGC), DNA II d(GCGGTTGGCG) .d(CGCCAACCGC), DNA III : d(GCGGT ^ TGGCG) .d(CGCCAACCGC), DNA IV d(GCGGGCGGCG).d(CGCCCGCCGC) and DNA V d(GCGGCCGGCG) . d(CGCCGGCCGC) were studied by $^1$H NMR. The NMR spectra of these five DNA duplexes in the absence of the enzyme clearly show that the formation of a thymine dimer within the DNA induces only a minor distortion in the structure, and that the overall structure of B type DNA is retained. The photo-dimer formation is found to cause a large change in chemical shifts at the GC7 base pair, which is located at the 3'-side of the thymine dimer, accompanied by the major conformational change at the thymine dimer site. The binding of a mutant T$_4$ endonuclease V (E23Q), which is unable to digest DNA containing a thymine dimer, to the DNA duplex d(GCGGT ^ TGGCG)ㆍd(CGCCAACCGC) causes a large down-field shift in the imino proton resonance of GC7. Therefore, this position is thought to be either the crucial point of the interaction wi th T$_4$ endonuclease V, or the si to of a conformational change in the DNA caused by the binding of T$_4$ endonuclease V. Usually, it is very difficult to assign NMR peaks in DNA * protein complex because of severe peak overlaps. In order to overcome these peak overlaps, we used a method of deuterium incorporation.

  • PDF

A study on development of plastic vial tube for the DNA detection process (DNA 검출 공정 전용 플라스틱 튜브형 시험관 개발에 관한 연구)

  • Choi, Kyu-wan;La, Moon-woo;Gang, Jung-hee;Chang, Sung-ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • PCR(Polymerase chain reaction) is a technique to replicate and amplify a desired part of DNA. It is used in various aspects such as DNA fingerprint analysis and rare DNA amplification of an extinct animal. Especially in the medical diagnosis field, it provides various measurement methods at the molecular level such as genetic diagnosis, and is a basic tool for molecular diagnostics. The internal shape of the plastic vial tube for PCR analysis used in the DNA detection process, and the surface roughness and internal cleanliness can affect detection and discrimination results. The plastic vial tube demanded by the developer of the PCR analysis equipment should be changed to a structure that eliminates the residual washing solution in the washing process to ensure the internal cleanliness. Thus the internal structure and the internal surface design for improving the PCR amplification efficiency are key issues to develop the plastic vial tube for the DNA detection process.

Expression of Cytochrome $b_{5}$ Retropseudogenes in Hunam Blood

  • Hwang, Mi-Sun;Alan W.Steggles;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.167-170
    • /
    • 2003
  • Cytochrome $b_{5}$($b_{5}$) can be found in a variety of tissues and plays a role in the electron transfer pathways. Several retropseudogenes (numbered as I, II, II, IV, V) have been identified and well investigated for their structures. However, retropseudogene I is not clear in terms of its location on the chromosome. In addition the structure and the exression of retropseudogene V have not been confirmed. To examine the structure of bs retropseudogenes V and to see whether it is expressed in human blood we applied recombinant DNA technologies including polymerase chain reaction (PCR) and DNA sequencing. Retropseudogene V turned out to contain open reading frame (ORF) within its structure, however, no evidence of its expression was detected. Retropseudogene I was also found on the chromosome V. This study should contribute to the understanding of the structure of bs gene family.

  • PDF

Secondary structure analysis of MRA1997 from Mycobacterium tuberculosis and characterization of DNA binding property

  • Kim, Hyo Jung;Lee, Ki-Young;Kim, Yena;Kwon, Ae-Ran;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.36-40
    • /
    • 2016
  • MRA1997 is a highly conserved protein from mycobacterial strains. However, no structural and functional information is associated with it. Thus, to obtain details about structure and function of this protein, we have utilized NMR spectroscopy. The recombinant MRA1997 was highly purified and its DNA binding mode was characterized. The tertiary structure of MRA1997 was modeled on the basis of our NMR chemical shift data combined with the webserver CS23D. The binding of MRA1997 with DNA was first monitored by electrophoresis mobility shift assays. The residues involved in DNA binding are identified using NMR chemical shift perturbation experiments. Based on our study, we suggest that MRA1997 interacts with DNA and may play an important role in Mycobacterium tuberculosis physiology.

Characterization of the Folding Structure of 3'-end of Lactate Dehydrogenase A-mRNA Isolated from Hormone Stimulated Rat $C_{6}$ Glioma cell culture (홀몬으로 처리된 쥐의 $C_{6}$ glioma 세포배양으로부터 분리된 낙산탈수소 효소 A-mRNA의 3'-말단의 2차 구조)

  • 배석철;이승기
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.94-102
    • /
    • 1987
  • Rat liver LDH A-cDNA has been isolated from a .lambda.gt11-rat lover cDNA library and partially characterized. The size of the isolated rat liver LDH A-cDNA if shown to be 1.6Kb and restriction enzyme sites for the rat liver LDH A-cDNA are also mapped. 682-nucleotide sequence coding for 3'-end of rat liver LDH A-cDNA has been analyzed and compared to the nucleotide sequence of the same region of rat $C_6$-glioma cell LDH A-cDNA which has been cloned from the hormonally stimulated cell cultures. The result shows that 177 nucleotide sequences coding for the C-terminal 59-amino acids are identical but 505 nucleotide sequences of 3'-nontranslated region of the two LSH A-cDNA exhibit characteristic differences in thier nucleotide sequences. Computer analysis for the folding structures for 3'-end 400 nucleotide sequences of the two LDH A-cDNA shows a possibility implying that the two LDH A-mRNAs isolated from different tissues of rats may have different half life and therefore their translational efficiency may be different. It has been previously demonstrated that isoproterenol stimulated rat $C_6$ -glioma cell cultures produce LDH A-mRNA showing 2 to 3-fold longer half life in comparison to that of noninduced LHD A-mRNA. The result therefore support for the idea that hormonally stimulated rat $C_6$-glioma cells may produce LDH A-mRNA containing different nucleotide sequences at the 3'-end nontranslated region by which the hormonally induced LDH A-mRNA could have more stable secondary mRAN structure in comparison to that of noninduced LDH A-mRNA.

  • PDF

NMR Studies on N-terminal Domain of DNA2

  • Jung, Young-Sang;Lee, Kyoung-Hwa;Jung, Jin-Won;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.74-81
    • /
    • 2000
  • Saccharomyces cerevisiae Dna2 protein has biochemical activities: DNA-dependent ATPase, DNA helicase and DNA nuclease and is essential for cell viability. Especially, Pro$\^$504/ is determined as an important residue in ATPase, helicase, and nuclease activity. We synthesized and determined the three-dimensional solution structure of N-terminal domain comprising residues of Val$\^$501/ -_Phe$\^$508/ (Dna2$\^$pep/) using two-dimensional $^1$H-NMR and dynamical simulated annealing calculations. On the basis of a total of 44 experimental restraints including NOEs, $^3$J$\_$$\alpha$$\beta$/ and $^3$J$\_$$\alpha$$\beta$/ coupling constants, the solution structures of Dna2$\^$epe/ were calculated with the program CNS. The 23 lowest energy structures were selected out of 50 final simulated-annealing structures. The atomic RMSDs of the final 23 structures fur the individual residues were calculated with respect to the average structure. The mean RMSDs for the 23 structures were 0.042 nm for backbone atoms and 0.316 nm for all heavy atoms, respectively. The Ramachandran plot indicates that the $\Phi$, Ψ angles of the 23 final structures are properly distributed in energetically acceptable regions. Solution structure of Dna2$\^$pep/ showed a single unique turn spanning residues of Asn$\^$503/ Val$\^$506/.

  • PDF

Label/Quencher-Free Detection of Exon Deletion Mutation in Epidermal Growth Factor Receptor Gene Using G-Quadruplex-Inducing DNA Probe

  • Kim, Hyo Ryoung;Lee, Il Joon;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.72-76
    • /
    • 2017
  • Detection of exon 19 deletion mutation in the epidermal growth factor receptor (EGFR) gene, which results in increased and sustained phosphorylation of EGFR, is important for diagnosis and treatment guidelines in non-small-cell lung cancer. Here, we have developed a simple and convenient detection system using the interaction between G-quadruplex and fluorophore thioflavin T (ThT) for discriminating EGFR exon 19 deletion mutant DNA from wild type without a label and quencher. In the presence of exon 19 deletion mutant DNA, the probe DNAs annealed to the target sequences were transformed into G-quadruplex structure. Subsequent intercalation of ThT into the G-quadruplex resulted in a light-up fluorescence signal, which reflects the amount of mutant DNA. Due to stark differences in fluorescence intensity between mutant and wild-type DNA, we suggest that the induced G-quadruplex structure in the probe DNA can report the presence of cancer-causing deletion mutant DNAs with high sensitivity.