• Title/Summary/Keyword: DNA Selective Immobilization

Search Result 4, Processing Time 0.02 seconds

DNA Selective Immobilization on a Microcantilever with Nano-Interdigitated Electrodes (Nano-IDEs) Using Cyclic Voltammetry (맞물린 나노전극을 가지는 마이크로 캔틸레버의 제작 및 순환전압전류방법을 이용한 DNA의 선택적인 고정화)

  • Lee, Jung-A;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • We present a novel microcantilever device with nano-interdigitated electrodes (nano-IDEs) and DNA selective immobilization on the nano-IDEs for biosensing applications. Using the nano-IDEs and cyclic voltammetric methods, we have achieved selective immobilization of DNA with submicrometer spatial resolution on a freestanding microcantilever. $70{\sim}500\;nm$-wide gold (Au) nano-IDEs are fabricated on a low-stress SiNx microcantilever with dimensions of $100{\sim}600\;{\mu}m$ in length, and $15{\sim}60\;{\mu}m$ in width, with a $0.5\;{\mu}m$ thickness using electron beam lithography and bulk micromachining. Streptavidin is selectively deposited on one side of the nano-IDEs using cyclic voltammetry at a scan rate of 0.1 V/s with a range of $-0.2{\sim}0.7\;V$ during $1{\sim}5$ cycles. The selective deposition of dsDNA is confirmed by fluorescence microscopy after labeling with YOYO-1 dye.

Fabrication of Poly(diallyldimethylammonium chloride) - Patterned Substrates for Patterning of Single Strand DNA Using Ion Implantation

  • Ahn, Mi-Young;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.243-247
    • /
    • 2011
  • In this study, a convenient method for the selective immobilization of single strand DNA (ssDNA) on a polymer surface was described. A positively charged polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), was spin-coated on a tissue culture petridish and the micropatterns of the PDDA were formed by selective ion implantation through a pattern mask. The surface property of the implanted PDDA was investigated by using a surface profiler and FT-IR spectrometer. Cy3-labeled ssDNA was selectively immobilized on the PDDA patterns through ionic interaction and thus, well-defined ssDNA patterns were obtained.

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika;Mittal, Jagjiwan;Narang, Jagriti;Mishra, Annu;Pudake, Ramesh Namdeo
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.291-298
    • /
    • 2021
  • False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Electrochemical Detection of Hydrogen Peroxide based on Hemoglobin-DNA/pyterpy Modified Gold Electrode (Hemoglobin-DNA/pyterpy 박막을 이용한 과산화수소의 전기화학적 검출)

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1295-1296
    • /
    • 2008
  • Hydrogen peroxide ($H_2O_2$) biosensor is one of the most developing sensors because this kind of sensors is highly selective and responds quickly to the specific substrate. Hemoglobin (Hb) has been used as ideal biomolecules to construct hydrogen peroxide biosensors because of their high selectivity to $H_2O_2$. The direct electron transfer of Hb has widely investigated for application in the determination of $H_2O_2$ because of its simplicity, high selectivity and intrinsic sensitivity. An electrochemical detection for hydrogen peroxide was investigated based on immobilization of hemoglobin on DNA/Fe(pyterpy)$^{2+}$ modified gold electrode. The pyterpy monolayers were firstly an electron deposition onto the gold electrode surface of the quartz crystal microbalance (QCM). It is offered a template to attach negatively charged DNA. The fabrication process of the electrode was verified by quartz crystal analyzer (QCA). The experimental parameters such as pH, applied potential and amperometric response were evaluated and optimized. Under the optimized conditions, this sensor shows the linear response within the range between $3.0{\times}10^{-6}$ to $9.0{|times}10^{-4}$ M concentrations of $H_2O_2$. The detection limit was determined to be $9{\times}10^{-7}$ M (based on the S/N=3).

  • PDF