• Title/Summary/Keyword: DNA Repair

Search Result 570, Processing Time 0.041 seconds

Contribution of the MLH1 -93G>A Promoter Polymorphism in Modulating Susceptibility Risk in Malaysian Colorectal Cancer Patients

  • Nizam, Zahary Mohd;Abdul Aziz, Ahmad Aizat;Kaur, Gurjeet;Abu Hassan, Muhammad Radzi;Mohd Sidek, Ahmad Shanwani;Lee, Yeong Yeh;Mazuwin, Maya;Ankathil, Ravindran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.619-624
    • /
    • 2013
  • Background: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable. Aim: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk. Methods: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs). Results: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253). Conclusion: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.

Histochemical Analysis of the Cutaneous Wound Healing in the Amphibian (양서류 피부 상처회복과정에 대한 조직화학적 분석)

  • Lim, Do-Sun;Jeong, Soon-Jeong;Jeong, Je-O;Park, Joo-Cheol;Kim, Heung-Joong;Moon, Myung-Jin;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • The wound healing is very complex biological processing including inflammatory, reepithelialization and matrix construction. According to the biological systematic category, the ability of the healing is very different. Generally healing ability of the lower animal group has been known more excellent compared to its higher group. Therefore, lower animals have been used as the experimental model to explore the mechanism of the wound healing or repair. To verify histochemical characteristics of the wound healing, we have used skin of the frog (Bombina orientalis) as known common amphibian. At day 1, 10, and 16, the mucous substance was very actively synthesized and strong positive by PAS and Alcian blue (pH 2.5). Day 10 after wounding, margin of the wound was gradually strong positive by PTAH staining for detection of collagen synthesis. At 3 to 6 hour and day 23 to 27, we have found the cell division was active through the MG-P staining, in which the concentration and division of DNA in nucleus was green to deep blue color.

Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang;Kwon, Kihwan;Lim, Soyeon;Kang, Seok-Min;Ko, Young-Guk;Xu, ZhengZhe;Chung, Ji Hyung;Kim, Byung-Soo;Lee, Hakbae;Joung, Boyoung;Park, Sungha;Choi, Donghoon;Jang, Yangsoo;Chung, Nam-Sik;Yoo, Kyung-Jong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.402-407
    • /
    • 2005
  • Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Adaptive Response Induced by Low Dose Ionizing Raditation in Human Cervical Carcinoma Cells

  • Kim, Jeong -Hee;Lee, Kyung -Jong;Cho, Chul -Koo;Yoo, Seong -Yul;Kim, Tae -Hwan;Ji, Young -Hoon;Kim, Sung -Ho
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.410-414
    • /
    • 1995
  • Adaptive response induced by low dese .gamma.-ray irradiation in human cervical carcinoma cells was examined. Cells were exposured to low dose of .gamma.-ray irradiation in human cervical carcinoma cells was examined. Cells were exposured to low dose of .gamma.-ray (1-cGy) followed by high doses of r-ray irradiation (0,1,2,3,5,7 and 9Gy for chlnogenic assay or 1.5Gy for micronucleus assay) with various time intervals. Survival fractions of cells in both low dose-irradiated and unirrated groups were analyzed by clonogenic assay. Surviva fractions of low dose-irradiated in cell survival was maximum when low and high dose irradiation time interval was 4 hr. Frequencies of micronuclei which is an indicative of chromosome aberration were also enutained from survival fractions analyzed by clonogenic assay, maximum when low and high dose irradiation time interval was 4hr. Frequencies of micronuclei which is an indicative of chromosome aberration were also enumerated in both low dose-irradiated and unirradiated groups. In consiststent with the result obtained from survival fractions analyzed by clonogenic assay, maximum reduction in frquencies of micronuclei was observed when low dose radiation was given 4 hr prior to high response to subsequent high dose .gamma.-ray irradiation in human cervical carcinomal cells. Our data suggest that one of the possible mechanisms of adaptive response induced by low dose rediation is the increase in repair of DNA double strand breaks in low dose radiation-adapted cells.

  • PDF

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

Alteration of Apurinic/Apyrimidinic Endonuclease-1/Redox Factor-1 in Human Mon-small Cell Lung Cancer (비소세포 폐암조직에시 Apurinic/Apyrimidinic Endonuclease-1/Redox Factor-1의 발현변화)

  • Yoo, Dae-Goon;Song, Yun-Jeong;Cho, Eun-Jung;Kang, Min-Woong;Han, Jong-Hee;Na, Myung-Hoon;Lim, Seung-Pyung;Yu, Jae-Hyeon;Jeon, Byeong-Hwa;Lee, Young
    • Journal of Chest Surgery
    • /
    • v.40 no.8
    • /
    • pp.529-535
    • /
    • 2007
  • Background: An imbalance between oxidants and antioxidants leads to oxidative stress, and this has been proposed to play an important role in the pathogenesis of lung neoplasm. Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) is a multifunctional protein involved in DNA base excision repair and the redox regulation of many transcription factors. However, the alteration of the expressed levels of APE/ref-1 in non-small cell lung cancer is unknown. Material and Method: Forty-nine patients with surgically resected non-small cell lung cancer (NSCLC) were included in this study. Immunohistochemical staining with APE/ref-1 antibodies was performed, and their expressions were analyzed via Western blotting for specific antibodies. Result: APE/ref-1 was localized at the nucleus and mainly in the non-tumor region of the NSCLC tissue specimens; it was expressed in the cytoplasm and nucleus of the NSCLC. The nuclear and cytoplasmic expressions of APE/ref-1 in lung cancers were markedly up-regulated in the NSCLC, and this was correlated with the clinical stage. Catalase, as first-line antioxidant defense, was dramatically decreased in the NSCLC. Conclusion: Taken together, our results suggest that APE/ref-1, and especially cytoplasmic APE/ref-1, was upregulated in the lung cancer regions, and this may contribute to the compensatory defense system against oxidative stress. A low expression of catalase might have fundamental effects on the extracellular redox state of lung tumors, along with the potential consequences for the tumors.

EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL (백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Soung-Min;Kim, Yun-Hee;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.

The Role of Ref-1 in the Differentiation Process of Monocytic THP-1 Cells (단핵구세포주 THP-1의 분화과정에서 Ref-1의 역할)

  • Da Sol Kim;Kang Mi Kim;Koanhoi Kim;Young Chul Park
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2024
  • Redox factor (Ref)-1, a ubiquitously expressed protein, acts as a modulator of redox-sensitive tran- scription factors and as an endonuclease in the repair pathway of damaged DNA. However, the function of Ref-1 in the differentiation of monocytes into macrophages has not been defined. In this study, we investigated the effects of Ref-1 on the monocyte differentiation process using the human monocytic cell line THP-1. The differentiation agent PMA increased cell adhesion over time and showed a sig- nificant increase in phagocytic function but decreased the intracellular amount of Ref-1. Ref-1 inhibitor E3330 and Ref-1 knockdown using the siRNA technique reduced cell adhesion and the expression of differentiation markers, such as CD14, ICAM-1, and CD11b, by PMA stimulation. This means that the role of Ref-1 is absolutely necessary in the initial process of differentiating THP-1 cells stimulated by PMA. Next, the distribution of Ref-1 was examined in the cytoplasm and nucleus of THP-1 cells stimulated with PMA. Surprisingly, PMA stimulation resulted in the rapid translocation of Ref-1 to the nucleus. To prove that movement of Ref-1 to the nucleus is required for monocyte differentiation, a Ref-1 vector with the nuclear localization sequence (NLS) deleted was used. As a result, overexpression of ∆NLS Ref-1, which restricted movement to the nucleus, suppressed the expression of differentiation markers and notably reduced phagocytic function in PMA-stimulated THP-1 cells. In conclusion, these data suggest that the differentiation of monocytic THP-1 cells requires Ref-1 nuclear translocation during the initial process of biochemical events following stimulation from PMA.

Potential Role of Hedgehog Signaling in Radiation-induced Liver Fibrosis (방사선에 의한 간섬유증에서 헤지호그의 잠재적 역할)

  • Wang, Sihyung;Jung, Youngmi
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.710-720
    • /
    • 2013
  • Radiotherapy is commonly used in treating many kinds of cancers which cannot be cured by other therapeutic strategies. However, radiotherapy also induces the damages on the normal tissues. Radiation-induced fibrosis is frequently observed in the patients undergoing radiotherapy, and becomes a major obstacle in the treatment of intrahepatic cancer. Hedgehog (Hh) that is an essential in the liver formation during embryogenesis is not detected in the healthy liver, but activated and modulates the repair process in damaged livers in adult. The expression of Hh increases with the degree of liver damage, regulating the proliferation of hepatic progenitors and hepatic stellate cells (HSC). In addition, Hh induces epithelial-to-mesencymal transition (EMT) and activation of myofibroblasts. In the irradiated livers, up-regulated expression of Hh signaling was associated with proliferation of progenitors, EMT induction, and increased fibrosis. Female-specific expression of Hh leaded to the expansion of progenitors and the accumulation of collagen in the irradiated livers of female mice, indicating that gender disparity in Hh expression may be related with radiation-susceptibility in female. Hence, Hh signaling becomes a novel object of studies for fibrogenesis induced by radiation. However, the absence of the established experimental animal models showing the similar physiopathology with human liver diseases and fibrosis-favorable microenvironment hamper the studies for the radiation-induced fibrosis, providing a few descriptive results. Therefore, further research on the association of Hh with radiation-induced fibrosis can identify the cell and tissue-specific effects of Hh and provides the basic knowledge for underlying mechanisms, contributing to developing therapies for preventing the radiation-induced fibrosis.