DOI QR코드

DOI QR Code

Potential Role of Hedgehog Signaling in Radiation-induced Liver Fibrosis

방사선에 의한 간섬유증에서 헤지호그의 잠재적 역할

  • Wang, Sihyung (Department of Biological Science, Pusan National University) ;
  • Jung, Youngmi (Department of Biological Science, Pusan National University)
  • 왕시형 (부산대학교 자연과학대학 생명과학과) ;
  • 정영미 (부산대학교 자연과학대학 생명과학과)
  • Received : 2013.05.25
  • Accepted : 2013.05.27
  • Published : 2013.05.30

Abstract

Radiotherapy is commonly used in treating many kinds of cancers which cannot be cured by other therapeutic strategies. However, radiotherapy also induces the damages on the normal tissues. Radiation-induced fibrosis is frequently observed in the patients undergoing radiotherapy, and becomes a major obstacle in the treatment of intrahepatic cancer. Hedgehog (Hh) that is an essential in the liver formation during embryogenesis is not detected in the healthy liver, but activated and modulates the repair process in damaged livers in adult. The expression of Hh increases with the degree of liver damage, regulating the proliferation of hepatic progenitors and hepatic stellate cells (HSC). In addition, Hh induces epithelial-to-mesencymal transition (EMT) and activation of myofibroblasts. In the irradiated livers, up-regulated expression of Hh signaling was associated with proliferation of progenitors, EMT induction, and increased fibrosis. Female-specific expression of Hh leaded to the expansion of progenitors and the accumulation of collagen in the irradiated livers of female mice, indicating that gender disparity in Hh expression may be related with radiation-susceptibility in female. Hence, Hh signaling becomes a novel object of studies for fibrogenesis induced by radiation. However, the absence of the established experimental animal models showing the similar physiopathology with human liver diseases and fibrosis-favorable microenvironment hamper the studies for the radiation-induced fibrosis, providing a few descriptive results. Therefore, further research on the association of Hh with radiation-induced fibrosis can identify the cell and tissue-specific effects of Hh and provides the basic knowledge for underlying mechanisms, contributing to developing therapies for preventing the radiation-induced fibrosis.

방사선 치료는 가장 일반적으로 사용되고 있는 항암치료로, 암 환자의 수 증가와 동반하여 방사선 활용도는 더욱 증가하고 있다. 방사선치료에 대한 환자들의 심리적 거부감과 산화적 스트레스, 저산소증, DNA 손상을 포함하여, 치료 후 나타나는 간 섬유화는 방사선 치료의 가장 큰 문제점으로 대두되고 있다. 간암의 경우 대부분의 환자들이 섬유화를 동반하고 있어서, 방사선에 의해 암세포가 제거된다 하더라도, 기존에 남아있는 손상 부위에서의 섬유화와 방사선 조사에 의한 정상조직의 섬유화는 간경변 유발 확률을 높이고 있다. 간 섬유화는 여러 간질환에서 흔히 관찰되는 증상으로, 간 섬유화 진행 기작의 규명은 만성질환으로의 진행을 억제할 수 있는 치료책 개발로 연계될 수 있지만, 아직까지 명확히 규명되지 않음에 따라, 섬유화를 억제할 수 있는 효과적인 방법이 없는 실정이다. 최근 간 섬유화 생성 및 진행에 대한 헤지호그의 역할이 밝혀지면서, 간암 및 만성질환으로의 진행을 이해하기 위한 연구대상으로 대두되고 있다. 헤지호그는 손상된 간에서 발현되어 보수과정에 기여하게 된다. 헤지호그의 발현은 간 손상 정도에 비례하여 발현되어, 간 줄기세포 및 간 성상세포의 증식을 조절한다. 또한, TGF-${\beta}1$와, EMT를 유도하고 근섬유화세포의 활성을 조절하여, 간 섬유화 진행에 중심적 역할을 한다. 방사선이 조사된 생쥐의 간에서도 헤지호그의 발현증가가 관찰되었고, 이에 따른 간 줄기세포의 증식 및 EMT 유도, 콜라겐의 축적이 관찰되었다. 또한, 방사선이 조사된 암컷 생쥐의 간에서 헤지호그의 차별적 증가는 줄기세포 및 섬유화 증대로 연결되었고, 이는 방사선 민감성에 대한 성별차이를 설명할 수 있는 생물학적 근거가 될 수 있다. 그러나, 방사선에 의해 유도된 간 섬유화에 대한 연구결과들이 헤지호그를 비롯하여, 표면적인 결과보고만 있을 뿐, 섬유화 진행에 대한 구체적 기작을 밝히지 못하고 있다. 여러 간 질환진행에서 규명된 헤지호그 작용에 대한 지식을 방사선에 의해 유도된 간 섬유화를 이해하기 위한 기초자료로 활용하고, 사람에서의 방사선 부작용과 유사한 동물모델의 정립 및 헤지호그 역할을 직접적으로 규명할 수 있는 추가적 연구을 통해서, 간 섬유화 형성 기작을 이해할 수 있는 연구결과가 기대된다.

Keywords

References

  1. Ahmadi, A. 2012. Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients. Chin J Integr Med 18, 635-640. https://doi.org/10.1007/s11655-012-1183-y
  2. Anscher, M. S., Chen, L., Rabbani, Z., Kang, S., Larrier, N., Huang, H., Samulski, T. V., Dewhirst, M. W., Brizel, D. M. and Folz, R. J. 2005. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int J Radiat Oncol Biol Phys 62, 255-259. https://doi.org/10.1016/j.ijrobp.2005.01.040
  3. Bataller, R. and Brenner, D. A. 2005. Liver fibrosis. J Clin Invest 115, 209-218. https://doi.org/10.1172/JCI24282
  4. Bennett, M., Feldmeier, J., Hampson, N., Smee, R. and Milross, C. 2012. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst Rev doi: 10.1002/ 14651858.CD005005.pub3.
  5. Bessell, A., Glenny, A. M., Furness, S., Clarkson, J. E., Oliver, R., Conway, D. I., Macluskey, M., Pavitt, S., Sloan, P. and Worthington, H. V. 2011. Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment. Cochrane Database Syst Rev 7, doi: 10.1002/14651858.CD006205.pub3.
  6. Chin, J. L., Touma, N., Pautler, S. E., Guram, K. S., Bella, A. J., Downey, D. B. and Moussa, M. 2003. Serial histopathology results of salvage cryoablation for prostate cancer after radiation failure. J Urol 170, 1199-1202. https://doi.org/10.1097/01.ju.0000085620.28141.40
  7. Chin, M. S., Freniere, B. B., Bonney, C. F., Lancerotto, L., Saleeby, J. H., Lo, Y.-C., Orgill, D. P., Fitzgerald, T. J. and Lalikos, J. F. 2013. Skin Perfusion and Oxygenation Changes in Radiation Fibrosis. Plast Reconstr Surg 131, 707-716. https://doi.org/10.1097/PRS.0b013e3182818b94
  8. Choi, S. S. and Diehl, A. M. 2009. Epithelial-to-mesenchymal transitions in the liver. Hepatology 50, 2007-2013. https://doi.org/10.1002/hep.23196
  9. Choi, S. S., Omenetti, A., Syn, W.-K. and Diehl, A. M. 2011. The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol 43, 238-244. https://doi.org/10.1016/j.biocel.2010.10.015
  10. Chu, P. S., Nakamoto, N., Ebinuma, H., Usui, S., Saeki, K., Matsumoto, A., Mikami, Y., Sugiyama, K., Tomita, K., Kanai, T., Saito, H. and Hibi, T. 2013. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology [Epub ahead of print].
  11. Darby, S. C., Cutter, D. J., Boerma, M., Constine, L. S., Fajardo, L. F., Kodama, K., Mabuchi, K., Marks, L. B., Mettler, F. A. and Pierce, L. J. 2010. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76, 656-665. https://doi.org/10.1016/j.ijrobp.2009.09.064
  12. Delaney, G., Barton, M. and Jacob, S. 2004. Estimation of an optimal radiotherapy utilization rate for melanoma. Cancer 100, 1293-1301. https://doi.org/10.1002/cncr.20092
  13. Devasagayam, T., Tilak, J., Boloor, K., Sane, K., Ghaskadbi, S. and Lele, R. 2004. Free radicals and antioxidants in human health: current status and future prospects. JAPI2004 52, 794-804.
  14. Di Franco, R., Sammarco, E., Calvanese, M. G., De Natale, F., Falivene, S., Di Lecce, A., Giugliano, F. M., Murino, P., Manzo, R. and Cappabianca, S. 2013. Preventing the acute skin side effects in patients treated with radiotherapy for breast cancer: the use of corneometry in order to evaluate the protective effect of moisturizing creams. Radiat Oncol 8,
  15. Distler, J. H., Jungel, A., Pileckyte, M., Zwerina, J., Michel, B. A., Gay, R. E., Kowal-Bielecka, O., Matucci-Cerinic, M., Schett, G. and Marti, H. H. 2007. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum 56, 4203-4215. https://doi.org/10.1002/art.23074
  16. Du, S.-S., Qiang, M., Zeng, Z.-C., Zhou, J., Tan, Y.-S., Zhang, Z.-Y., Zeng, H.-Y. and Zhong-Shan, L. 2010. Radiation-induced liver fibrosis is mitigated by gene therapy inhibiting transforming growth factor-${\beta}$ signaling in the rat. Int J Radiat Oncol Biol Phys 78, 1513-1523. https://doi.org/10.1016/j.ijrobp.2010.06.046
  17. Gil-Alzugaray, B., Chopitea, A., Inarrairaegui, M., Bilbao, J. I., Rodriguez-Fraile, M., Rodriguez, J., Benito, A., Dominguez, I., D'Avola, D. and Herrero, J. I. 2013. Prognostic factors and prevention of radioembolization -induced liver disease. Hepatology 57, [Epub ahead of print].
  18. Giusti, A. 1998. Human cell membrane oxidative damage induced by single and fractionated doses of ionizing radiation: a fluorescence spectroscopy study. Int J Radiat Biol 74, 595-605. https://doi.org/10.1080/095530098141177
  19. Gonzalez-Arriagada, W. A., de Andrade, M. A. C., Ramos, L. M. A., Bezerra, J. R. S., Santos-Silva, A. R. and Lopes, M. A. 2013. Evaluation of an educational video to improve the understanding of radiotherapy side effects in head and neck cancer patients. Support Care Cancer [Epub ahead of print].
  20. Gressner, O. A. and Gressner, A. M. 2008. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver international 28, 1065-1079. https://doi.org/10.1111/j.1478-3231.2008.01826.x
  21. Halliwell, B. 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721-724. https://doi.org/10.1016/S0140-6736(94)92211-X
  22. Henderson, M. A., Valluri, S., DesRosiers, C., Lopez, J. T., Batuello, C. N., Caperell-Grant, A., Mendonca, M. S., Powers, E.-M., Bigsby, R. M. and Dynlacht, J. R. 2009. Effect of gender on radiation-induced cataractogenesis. Radiat Res 172, 129-133. https://doi.org/10.1667/RR1589.1
  23. Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M.-L. and Gabbiani, G. 2007. The myofibroblast: one function, multiple origins. Am J Pathol 170, 1807-1816. https://doi.org/10.2353/ajpath.2007.070112
  24. Hirose, Y., Itoh, T. and Miyajima, A. 2009. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp Cell Res 315, 2648-2657. https://doi.org/10.1016/j.yexcr.2009.06.018
  25. Holmes, A., Abraham, D. J., Sa, S., Shiwen, X., Black, C. M. and Leask, A. 2001. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 276, 10594-10601. https://doi.org/10.1074/jbc.M010149200
  26. Hooper, J. E. and Scott, M. P. 2005. Communicating with hedgehogs. Nat Rev Mol Cell Biol 6, 306-317. https://doi.org/10.1038/nrm1622
  27. Horiguchi, M., Ota, M. and Rifkin, D. B. 2012. Matrix control of transforming growth factor-$\beta$ function. J Biochem (Tokyo) 152, 321-329. https://doi.org/10.1093/jb/mvs089
  28. Hyun, J. and Jung, Y. 2011. Potential Roles of Hedgehog and estrogen in regulating the progression of fatty liver disease. J Life Sci 21, 1795-1803. https://doi.org/10.5352/JLS.2011.21.12.1795
  29. Ingham, P. W., Nakano, Y. and Seger, C. 2011. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12, 393-406. https://doi.org/10.1038/nrg2984
  30. Jackson, J. G., Post, S. M. and Lozano, G. 2011. Regulation of tissue-and stimulus-specific cell fate decisions by p53 in vivo. J Pathol 223, 127-137. https://doi.org/10.1002/path.2783
  31. Jennings, F. and Arden, A. 1962. Development of radiation pneumonitis time and dose factors. Archives of Pathology (US) Formerly Arch Pathol Lab Med Formerly AMA Arch Pathol Changed back to Arch Pathol Lab Med 74, 351-360.
  32. Jeong, W.-I., Do, S.-H., Kim, T.-H., Jeong, D.-H., Hong, I.-H., Ki, M.-R., Kwak, D.-M., Lee, S.-S., Jee, Y.-H. and Kim, S.-B. 2007. Acute effects of fast neutron irradiation on mouse liver. J Radiat Res (Tokyo) 48, 233-240. https://doi.org/10.1269/jrr.0629
  33. Jung, Y., Brown, K. D., Witek, R. P., Omenetti, A., Yang, L., Vandongen, M., Milton, R. J., Hines, I. N., Rippe, R. A. and Spahr, L. 2008. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 134, 1532-1543. e1533. https://doi.org/10.1053/j.gastro.2008.02.022
  34. Jung, Y., McCall, S. J., Li, Y. X. and Diehl, A. M. 2007. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology 45, 1091-1096. https://doi.org/10.1002/hep.21660
  35. Jung, Y., Syn, W. K., Omenetti, A., Abdelmalek, M., Guy, C. D., Yang, L., Wang, J., Witek, R. P., Fearing, C. M. and Pereira, T. A. 2009. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137, 1478-1488. e1478. https://doi.org/10.1053/j.gastro.2009.06.051
  36. Jung, Y., Witek, R. P., Syn, W.-K., Choi, S. S., Omenetti, A., Premont, R., Guy, C. D. and Diehl, A. M. 2010. Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59, 655-665. https://doi.org/10.1136/gut.2009.204354
  37. Krieg, T. 2007. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9, 136-143. https://doi.org/10.1007/s11926-007-0008-z
  38. Leask, A., Denton, C. P. and Abraham, D. J. 2004. Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. J Invest Dermatol 122, 1-6. https://doi.org/10.1046/j.0022-202X.2003.22133.x
  39. Lee, C., Prabhu, V. and Slevin, N. J. 2011. Collagen vascular diseases and enhanced radiotherapy-induced normal tissue effects-a Case Report and a Review of Published Studies. Clin Oncol 23, 73-78. https://doi.org/10.1016/j.clon.2010.08.030
  40. Lee, I. J., Seong, J., Shim, S. J. and Han, K. H. 2009. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int J Radiat Oncol Biol Phys 73, 154-158. https://doi.org/10.1016/j.ijrobp.2008.04.035
  41. Lee, J. 2013. Understanding of Radiotherapy. The Society of Seoul Radiological Technologist Association.
  42. Lee, J. J., von Kessler, D. P., Parks, S. and Beachy, P. A. 1992. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 33-50. https://doi.org/10.1016/0092-8674(92)90264-D
  43. Lee, K., Wang, S., Hyun, J., Lee, Y. and Jung, Y. 2013. Hedgehog signaling influences gender-specific response of liver to radiation in mice. Hepatol Int Under review.
  44. Letterio, J. J. and Roberts, A. B. 1998. Regulation of immune responses by TGF-$\beta$*. Annu Rev Immunol 16, 137-161. https://doi.org/10.1146/annurev.immunol.16.1.137
  45. Lin, W., Weinberg, E. M. and Chung, R. T. 2013. Pathogenesis of accelerated fibrosis in HIV/HCV Co-infection. J Infect Dis 207, S13-S18. https://doi.org/10.1093/infdis/jis926
  46. Llovet, J. M. and Bruix, J. 2008. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48, 1312-1327. https://doi.org/10.1002/hep.22506
  47. Ma, L., Guo, Q., Zhang, Y., Kong, X., Yang, L., Lin, S., Huang, C., Pan, J. and Lu, J. 2013. The effect of intensity- modulated radiotherapy versus conventional radiotherapy on quality of life in patients with nasopharyngeal cancer: a cross-sectional study. Head Neck Oncol 5, 8.
  48. Manning, C. M., Johnston, C. J., Hernady, E., Miller, J.-n. H., Reed, C. K., Lawrence, B. P., Williams, J. P. and Finkelstein, J. N. 2013. Exacerbation of Lung Radiation Injury by Viral Infection: The Role of Clara Cells and Clara Cell Secretory Protein. Radiat Res [Epub ahead of print].
  49. Martin, M., Lefaix, J.-L. and Delanian, S. 2000. TGF-$\beta$1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47, 277-290. https://doi.org/10.1016/S0360-3016(00)00435-1
  50. Marx, R., Johnson, R. and Kline, S. 1985. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc 111, 49-54. https://doi.org/10.14219/jada.archive.1985.0074
  51. Meindl-Beinker, N. M. and Dooley, S. 2008. Transforming growth factor-$\beta$ and hepatocyte transdifferentiation in liver fibrogenesis. J Gastroenterol Hepatol 23, S122-S127. https://doi.org/10.1111/j.1440-1746.2007.05297.x
  52. Murrell, D. F. 1993. A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 28, 78-85. https://doi.org/10.1016/0190-9622(93)70014-K
  53. Nüsslein-Volhard, C. and Wieschaus, E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801. https://doi.org/10.1038/287795a0
  54. Nasir, G. A., Mohsin, S., Khan, M., Shams, S., Ali, G., Khan, S. N. and Riazuddin, S. 2013. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. J Transl Med 11, 78. https://doi.org/10.1186/1479-5876-11-78
  55. Ochoa, B., Syn, W. K., Delgado, I., Karaca, G. F., Jung, Y., Wang, J., Zubiaga, A. M., Fresnedo, O., Omenetti, A. and Zdanowicz, M. 2010. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51, 1712-1723. https://doi.org/10.1002/hep.23525
  56. Oh, C.-W., Bump, E. A., Kim, J.-S., Janigro, D. and Mayberg, M. R. 2001. Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat Res 156, 232-240. https://doi.org/10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2
  57. Ohri, N., Shen, X., Dicker, A. P., Doyle, L. A., Harrison, A. S. and Showalter, T. N. 2013. Radiotherapy protocol deviations and clinical outcomes: a meta-analysis of cooperative group clinical trials. J Natl Cancer Inst 105, [Epub ahead of print].
  58. Omenetti, A., Choi, S., Michelotti, G. and Diehl, A. M. 2011. Hedgehog signaling in the liver. J Hepatol 54, 366-373. https://doi.org/10.1016/j.jhep.2010.10.003
  59. Omenetti, A. and Diehl, A. M. 2008. The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol 294, G595-G598. https://doi.org/10.1152/ajpgi.00543.2007
  60. Omenetti, A., Popov, Y., Jung, Y., Choi, S. S., Witek, R. P., Yang, L., Brown, K. D., Schuppan, D. and Diehl, A. M. 2008. The hedgehog pathway regulates remodelling responses to biliary obstruction in rats. Gut 57, 1275-1282. https://doi.org/10.1136/gut.2008.148619
  61. Omenetti, A., Yang, L., Li, Y.-X., McCall, S. J., Jung, Y., Sicklick, J. K., Huang, J., Choi, S., Suzuki, A. and Diehl, A. M. 2007. Hedgehog-mediated mesenchymal–epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest 87, 499-514.
  62. Prithivirajsingh, S., Story, M. D., Bergh, S. A., Geara, F. B., Kian Ang, K., Ismail, S. M., Stevens, C. W., Buchholz, T. A. and Brock, W. A. 2004. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 571, 227-232. https://doi.org/10.1016/j.febslet.2004.06.078
  63. Pu, J., Qin, S.-s., Ding, J.-x., Zhang, Y., Zhu, W.-g., Yu, C.-h., Li, T., Tao, G.-z., Ji, F.-z. and Zhou, X.-l. 2013. A randomized controlled study of single-agent cisplatin and radiotherapy versus docetaxel/cisplatin and radiotherapy in high-risk early-stage cervical cancer after radical surgery. J Cancer Res Clin Oncol 139, 703-708. https://doi.org/10.1007/s00432-013-1373-9
  64. Qian, J., Feng, G.-S. and Vogl, T. 2003. Combined interventional therapies of hepatocellular carcinoma. World J Gastroenterol 9, 1885-1891.
  65. Richardson, R. B. 2009. Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY) 1, 887.
  66. Riley, P. 1994. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65, 27-33. https://doi.org/10.1080/09553009414550041
  67. Rodemann, H. P. and Bamberg, M. 1995. Cellular basis of radiation-induced fibrosis. Radiother Oncol 35, 83-90. https://doi.org/10.1016/0167-8140(95)01540-W
  68. Rosette, C. and Karin, M. 1995. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biology 128, 1111-1119. https://doi.org/10.1083/jcb.128.6.1111
  69. Rossi, L., Zoratto, F., Papa, A., Iodice, F., Minozzi, M., Frati, L. and Tomao, S. 2010. Current approach in the treatment of hepatocellular carcinoma. World J Gastrointest Oncol 2, 348. https://doi.org/10.4251/wjgo.v2.i9.348
  70. Sathian, B., Fazil, A., Sreedharan, J., Pant, S., Kakria, A., Sharan, K., Rajesh, E., Vishrutha, K. V., Shetty, S. B., Shahnavaz, S., Rao, J. H. and Marakala, V. 2013. Statistical modelling and forecasting of cervix cancer cases in radiation oncology treatment: a hospital based study from Western Nepal. Asian Pac J Cancer Prev 14, 2097-2100. https://doi.org/10.7314/APJCP.2013.14.3.2097
  71. Schuske, K., Hooper, J. E. and Scott, M. P. 1994. patched overexpression causes loss of wingless expression in Drosophila embryos. Dev Biol 164, 300-311. https://doi.org/10.1006/dbio.1994.1200
  72. Sempoux, C., Horsmans, Y., Geubel, A., Fraikin, J., Van Beers, B., Gigot, J., Lerut, J. and Rahier, J. 1997. Severe radiation- induced liver disease following localized radiation therapy for biliopancreatic carcinoma: Activation of hepatic stellate cells as an early event. Hepatology 26, 128-134. https://doi.org/10.1002/hep.510260117
  73. Seong, J., Kim, S. H., Chung, E. J., Lee, W. J. and Suh, C. O. 2000. Early alteration in TGF-$\beta$ mRNA expression in irradiated rat liver. Int J Radiat Oncol Biol Phys 46, 639-643. https://doi.org/10.1016/S0360-3016(99)00401-0
  74. Sicklick, J. K., Li, Y.-X., Melhem, A., Schmelzer, E., Zdanowicz, M., Huang, J., Caballero, M., Fair, J. H., Ludlow, J. W. and McClelland, R. E. 2006. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol 290, G859-G870.
  75. Sommer, J., Prosch, C., Bajrovic, A., Muenscher, A., Blessmann, M., Kruell, A., Petersen, C., Todorovic, M. and Tennstedt, P. 2013. Xerostomia after radiotherapy. Strahlenther Onkol 189, 216-222. https://doi.org/10.1007/s00066-012-0257-2
  76. Sridharan, V., Sharma, S. K., Moros, E. G., Corry, P. M., Tripathi, P., Lieblong, B. J., Guha, C., Hauer-Jensen, M. and Boerma, M. 2013. Effects of radiation on the epidermal growth factor receptor pathway in the heart. Int J Radiat Biol [Epub ahead of print].
  77. Stepan, V., Ramamoorthy, S., Nitsche, H., Zavros, Y., Merchant, J. L. and Todisco, A. 2005. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J Biol Chem 280, 15700-15708. https://doi.org/10.1074/jbc.M413037200
  78. Stubblefield, M. D. 2011. Radiation fibrosis syndrome: neuromuscular and musculoskeletal complications in cancer survivors. PM&R 3, 1041-1054. https://doi.org/10.1016/j.pmrj.2011.08.535
  79. Syn, W. K., Htun Oo, Y., Pereira, T. A., Karaca, G. F., Jung, Y., Omenetti, A., Witek, R. P., Choi, S. S., Guy, C. D. and Fearing, C. M. 2010. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998-2007. https://doi.org/10.1002/hep.23599
  80. Syn, W. K., Witek, R. P., Curbishley, S. M., Jung, Y., Choi, S. S., Enrich, B., Omenetti, A., Agboola, K. M., Fearing, C. M. and Tilg, H. 2009. Role for hedgehog pathway in regulating growth and function of invariant NKT cells. Eur J Immunol 39, 1879-1892. https://doi.org/10.1002/eji.200838890
  81. Teneva, B. 2011. Pathogenesis and assessment of renal function in patients with liver cirrhosis. Folia Med (Plovdiv) 54, 5-13.
  82. Tribius, S., Sommer, J., Prosch, C., Bajrovic, A., Muenscher, A., Blessmann, M., Kruell, A., Petersen, C., Todorovic, M. and Tennstedt, P. 2013. Xerostomia after radiotherapy: What matters-mean total dose or dose to each parotid gland? Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al].
  83. Ursino, S., Greco, C., Cartei, F., Colosimo, C., Stefanelli, A., Cacopardo, B., Berretta, M., Fiorica, F., Rizzo, L. and Nunnari, G. 2012. Radiotherapy and hepatocellular carcinoma: update and review of the literature. Eur Rev Med Pharmacol Sci 16, 1599-1604.
  84. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  85. Verrecchia, F., Mauviel, A. and Farge, D. 2006. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev 5, 563-569. https://doi.org/10.1016/j.autrev.2006.06.001
  86. Wang, S., Hyun, J., Youn, B. and Jung, Y. 2012. Hedgehog signaling regulates the repair response in mouse liver damaged by irradiation. Radiat Res 179, 69-75.
  87. Wernicke, A. G., Greenwood, E. A., Coplowitz, S., Parashar, B., Kulidzhanov, F., Christos, P. J., Fischer, A., Nori, D. and Chao, K. S. C. 2013. Tissue compliance meter is a more reproducible method of measuring radiation-induced fibrosis than late effects of normal tissue–subjective objective management analytical in patients treated with intracavitary brachytherapy accelerated partial breast irradiation: results of a prospective trial. Breast J 19, 250-258. https://doi.org/10.1111/tbj.12102
  88. Westbury, C., Pearson, A., Nerurkar, A., Reis-Filho, J., Steele, D., Peckitt, C., Sharp, G. and Yarnold, J. 2007. Hypoxia can be detected in irradiated normal human tissue: a study using the hypoxic marker pimonidazole hydrochloride. Br J Radiol 80, 934-938. https://doi.org/10.1259/bjr/25046649
  89. Yamamoto, N., Nakajima, M., Tsujii, H. and Kamada, T. 2013. Carbon ion radiotherapy for oligo-recurrence in the lung. Pulm Med [Epub ahead of print].
  90. Yang, L., Wang, Y., Mao, H., Fleig, S., Omenetti, A., Brown, K. D., Sicklick, J. K., Li, Y.-X. and Diehl, A. M. 2008. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48, 98-106. https://doi.org/10.1016/j.jhep.2007.07.032
  91. Yarnold, J. and Vozenin Brotons, M.-C. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97, 149-161. https://doi.org/10.1016/j.radonc.2010.09.002
  92. Yock, T. I. and Caruso, P. A. 2012. Risk of second cancers after photon and proton radiotherapy: a review of the data. Health Phys 103, 577-585. https://doi.org/10.1097/HP.0b013e3182609ba4
  93. Zhao, W., Diz, D. and Robbins, M. 2007. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 80, S23-S31. https://doi.org/10.1259/bjr/18237646