• Title/Summary/Keyword: DNA Repair

Search Result 570, Processing Time 0.019 seconds

A Novel Reciprocal Crosstalk between RNF168 and PARP1 to Regulate DNA Repair Processes

  • Kim, Jae Jin;Lee, Seo Yun;Kim, Soyeon;Chung, Jee Min;Kwon, Mira;Yoon, Jung Hyun;Park, Sangwook;Hwang, Yiseul;Park, Dongsun;Lee, Jong-Soo;Kang, Ho Chul
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.799-807
    • /
    • 2018
  • Emerging evidence has suggested that cellular crosstalk between RNF168 and poly(ADP-ribose) polymerase 1 (PARP1) contributes to the precise control of the DNA damage response (DDR). However, the direct and reciprocal functional link between them remains unclear. In this report, we identified that RNF168 ubiquitinates PARP1 via direct interaction and accelerates PARP1 degradation in the presence of poly (ADP-ribose) (PAR) chains, metabolites of activated PARP1. Through mass spectrometric analysis, we revealed that RNF168 ubiquitinated multiple lysine residues on PARP1 via K48-linked ubiquitin chain formation. Consistent with this, micro-irradiation-induced PARP1 accumulation at damaged chromatin was significantly increased by knockdown of endogenous RNF168. In addition, it was confirmed that abnormal changes of HR and HNEJ due to knockdown of RNF168 were restored by overexpression of WT RNF168 but not by reintroduction of mutants lacking E3 ligase activity or PAR binding ability. The comet assay also revealed that both PAR-binding and ubiquitin-conjugation activities are indispensable for the RNF168-mediated DNA repair process. Taken together, our results suggest that RNF168 acts as a counterpart of PARP1 in DDR and regulates the HR/NHEJ repair processes through the ubiquitination of PARP1.

Studies on Antimutagenic Effects and Gene Repair of Enzymatic Browning Reaction Products (효소적 갈변반응 생성물의 돌연변이 억제효과 및 유전자 수복에 관한 연구)

  • Ham, Seung-Shi;Kim, Sung-Wan;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.632-639
    • /
    • 1990
  • The biological activities of twelve different kinds of enzymatic browning reaction products(EBRP), which resulted from the reactants four kinds of polyphenols with polyphenol oxidase extracted from Ligularia fischeri, pimpinella brachycarpa and Aster scaber of edible mountain herbs. All of twelve samples did not show any mutagenic effect in the spore rec-assay, Ames mutagenicity test and DNA breaking test. However metal ions such as $Cu^{2+},\;Fe^{2+}$, and $Ni^{2+}$ were increased the DNA breakage in rec-assay. The EBRPs inhibited the mutagenicities induced by $benzo({\alpha})pyrene (B({\alpha})P)$, 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole(Trp-P-1) and 2-aminofluorene(2-AF) in Salmonella/microsome assay system with S-9 mix. In effects of EBRPs on the DNA repair system, the activity of EcoRI was highly inhibited and that of $T_{4}$ DNA ligase was inactivated by addition of EBRPs. The results of transformation ratio of plasmid pGA658 into E. coli HB 101 was significantly decreased by the reaction products of S. brachycarpa polyphenoloxidase (PPO). When UV light was exposed to the mixture of DNA and EBRP before the thanformation, the reaction products from L. fischeri PPO with pyrogallol, catechol and hydroxyhydroquinone stimulated transformation ratio.

  • PDF

DNA Repair Gene Associated with Clinical Outcome of Epithelial Ovarian Cancer Treated with Platinum-based Chemotherapy

  • Kang, Shan;Sun, Hai-Yan;Zhou, Rong-Miao;Wang, Na;Hu, Pei;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.941-946
    • /
    • 2013
  • Objective: The nucleotide excision repair (NER) and base excision repair (BER) pathways, two DNA repair pathways, are related to platinum resistance in cancer treatment. In this paper, we studied the association between single nucleotide polymorphisms (SNPs) of involved genes and response to platinum-based chemotherapy in epithelial ovarian cancer. Method: Eight SNPs in XRCC1 (BER), XPC and XPD (NER) were assessed in 213 patients with epithelial ovarian cancer using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) techniques. Results: The median progression-free survival (PFS) of patients carrying the Lys/Lys and Lys/Gln+Gln/Gln genotype of the XPC Lys/Gln polymorphism were 25 and 12 months, respectively (P=0.039); and the mean overall survival (OS) of patients was 31.1 and 27.8 months, respectively (P=0.048). Cox's multivariate analysis suggested that patients with epithelial ovarian cancer with the Gln allele had an increased risk of death (HR=1.75; 95% CI=1.06-2.91) compared to those with the Lys/Lys genotype. There are no associations between the XPC PAT+/-, XRCC1 Arg194Trp, Arg280His, Arg399Gln, and XPD Asp312Asn, Lys751Gln polymorphisms and the survival of patients with epithelial ovarian cancer when treated with platinum-based chemotherapy. Conclusion: Our results indicated that the XPC Lys939Gln polymorphism may correlate with clinical outcome of patients with epithelial ovarian cancer when treated with platinum-based chemotherapy in Northern China.

CYTOTOXICITY OF PATULIN AND ITS EFFECT ON THE LAMBDA DNA CLEAVAGE BY RESTRICTION ENDONUCLEASE

  • Lee, Kil-Soo
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.157-163
    • /
    • 1991
  • The effect of patulin, a mycotoxin, on the growth of Escherichia coli cell was investigated. E. coli cell elongation usually shown in SOS-response for DNA repair was induced by 20 mg of patulin per ml. After staining the E. coli chromosome with fluorescence dye(DAPI, 4', 6-diamino-2-phenyl-indole), chromosomal DNA partitioning was not affected by patulin. The observation indicateds that patulin acts as a DNA damaging agent which is effective for E. coli cell elongation introduced by the inhibition of septum formation.

  • PDF

Effects of Ultraviolet Light on DNA Replication and Repair in Cultured Myoblast Cells of Chick Embryo (培養한 鷄胚筋細胞의 DNA複製 및 回復에 미치는 紫外線의 影響)

  • Park, Sang-Dai;Lee, Suck-Hwe;Choe, Soo-Young;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.25 no.2
    • /
    • pp.55-62
    • /
    • 1982
  • DNA synthesis, unscheduled DNA synthesis, excision of pyrimidine dimers and phtoreactivation were determined in UV-irradiated differentiating muscle cells at various times of primary culture of 12 day chick embryos and results obtained were as follows. The rates of UV-induced unscheduled DNA synthesis were increased as increase of UV dose. And the rates were gradually decreased as the increase of time after culture, but at higher doses the decreasing tendency was remarkable. The patterns of DNA replication were changed drastically as a function of time so that in the seven day cultures the rate of $^3$H-thymidine incorporation was found to be 0.2% of the original activity. The pattern of inhibition of DNA replication by UV damage demonstrated that in cells of earlier stages there were no remarkable changes, but in cells of later stages there was significant fluctuation. Photoreactivation and the excision of pyrimidine dimer in the one day cultures showed that photoreactivation occurred immediately after UV-irradiation, but excision of pyrimidine dimer was gradually and slowly occurred. These results indicate that the differentiation of embryonic muscle cells accompanies the gradual reduction of DNA replication and unscheduled DNA synthesis, and that the photoreactivation is rapid process compared to excision repair.

  • PDF

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

ENHANCEMENT OF FREQUENCY OF RADIATION-INDUCED CHROMOSOME ABERRATIONS AND MICRONUCLEI BY ARA C AND 3AB

  • Chung, Hai-Won;Cho, Yoon-Hee;Kim, Su-Young;Kim, Tae yeon;Kim, Yang-Ji;Lee, Ra-Mi;Seo, Soo-Ra;Kim, Tae-Hwan;Ha, Sung-Hwan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.124-124
    • /
    • 2002
  • In order to determine the effect of the DNA repair inhibitors, cytosine arabinoside(Ara C)and 3-aminobenzamide(3AB) on the frequenceis of chromosomal aberrations and micronuclei induced by radiation. After in vitro exposure of human lymphocytes to x-ray(1-3Gy) DNA repair inhibitors, Ara C and 3AB were treated and the frequencies of micronuclei, translocation and dicentric chromosomes were analysed using FISH technique with DNA probe for chromosome 4.(omitted)

  • PDF

Characterization of UV-damaged repair genes in cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. Here, we report the cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 3.4 kb BglII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The isolated gene encodes a protein of 810 amino acids.

  • PDF

Isolation and Characterization of UV-inducible gene in Eukaryotic cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.52-56
    • /
    • 2001
  • The present study intends to characterize the DNA damage-inducible responses in eukaryotic cells. The fission yeast, S. pombe, which displays efficient DNA repair systems, was used in this study as a model system for higher eukaryotes. To study UV-inducible responses in S. pombe, five UV-inducible cDNA clones were isolated from S. pombe by using subtration hybridization method. To investigate the expression of isolated genes, the cellular levels of the transcripts of these genes were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene (UV130) increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 5 fold to UV-irradiation. In order to investigation whether the increase of UV130 transcripts was a specific results of UV-irradiation, UV130 transcript levels were examined after treating the cells to Methylmethane sulfonate (MMS). The transcripts of UV130 were not induced by treatment of 0.25% MMS. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To characterize the structure of UV130 gene, nucleotide sequences were analyzed. The nucleotide sequence of 1,340 nucleotide excluding poly(A) tail contains one open reading frame, which encodes a protein of 270 amino acids. The predicted amino acid sequences of UV130 do not exhibit any significant similarity to ther known sequences in the database.

  • PDF