• Title/Summary/Keyword: DNA Coding

Search Result 547, Processing Time 0.026 seconds

Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population

  • Li, Cong;Cai, Wentao;Liu, Shuli;Zhou, Chenghao;Cao, Mingyue;Yin, Hongwei;Sun, Dongxiao;Zhang, Shengli;Loor, Juan J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1725-1731
    • /
    • 2020
  • Objective: An initial RNA-Sequencing study revealed that UDP-galactose-4-epimerase (GALE) was one of the most promising candidates for milk protein concentration in Chinese Holstein cattle. This enzyme catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. To further validate the genetic effect of GALE on milk protein traits, genetic variations were identified, and genotypes-phenotypes associations were performed. Methods: The entire coding region and the 5'-regulatory region (5'-UTR) of GALE were re-sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed linear animal model with a population encompassing 1,027 Chinese Holstein cows. Results: A total of three variants in GALE were identified, including two novel variants (g.2114 A>G and g.2037 G>A) in the 5'-UTR and one previously reported variant (g.3836 G>C) in an intron. All three single nucleotide polymorphisms (SNPs) were associated with milk yield (p<0.0001), fat yield (p = 0.0006 to <0.0001), protein yield (p = 0.0232 to <0.0001) and protein percentage (p<0.0001), while no significant associations were detected between the SNPs and fat percentage. A strong linkage disequilibrium (D' = 0.96 to 1.00) was observed among all three SNPs, and a 5 Kb haplotype block involving three main haplotypes with GAG, AGC, and AGG was formed. The results of haplotype association analyses were consistent with the results of single locus association analysis (p<0.0001). The phenotypic variance ratio above 3.00% was observed for milk protein yield that was explained by SNP-g.3836G >C. Conclusion: Overall, our findings provided new insights into the polymorphic variations in bovine GALE gene and their associations with milk protein concentration. The data indicate their potential uses for marker-assisted breeding or genetic selection schemes.

Integrative Study on PPARGC1A: Hypothalamic Expression of Ppargc1a in ob/ob Mice and Association between PPARGC1A and Obesity in Korean Population

  • Hong, Mee-Suk;Kim, Hye-Kyung;Shin, Dong-Hoon;Song, Dae-Kyu;Ban, Ju Yeon;Kim, Bum Shik;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.318-322
    • /
    • 2008
  • Obesity is an increasing worldwide health problem that is strongly related to the imbalance of food intake and energy metabolism. It was well-known that several substances in the hypothalamus regulate food intake and energy metabolism. We planned an integrative study to elucidate the mechanism of the development of obesity. Firstly, to find candidate genes with the marvelous effect, the different expression in the hypothalamus between ob/ob and 48-h fasting mice was investigated by using DNA microarray technology. As a result, we found 3 genes [peroxisome proliferator activated receptor, gamma, coactivator 1 alpha (Ppargc1a), calmodulin 1 (Calm1), and complexin 2 (Cplx2)] showing the different hypothalamic expression between ob/ob and 48-h fasting mice. Secondly, a genetic approach on PPARGC1A gene was performed, because PPARGC1A acts as a transcriptional coactivator and a metabolic regulator. Two hundred forty three obese female patients with body mass index (BMI)${\geq}$25 and 285 control female subjects with BMI 18 to<23 were recruited according to the Classification of Korean Society for the Study of Obesity. Among the coding single nucleotide polymorphisms (cSNPs) of PPARGC1A, 2 missense SNPs (rs8192678, Gly482Ser; rs3736265, Thr612Met) and 1 synonymous SNP (rs3755863, Thr528Thr) were selected, and analyzed by PCR-RFLP and pyrosequencing. For the analysis of genetic data, chi-square ($X^2$) test and EH program were used. The rs8192678 was significantly associated with obese women (P<0.0006; odds ratio, 1.5327; 95% confidence interval, 1.2006-1.9568). Haplotypes also showed significant association with obese women ($X^2$=33.28, P<0.0008). These results suggest that PPARGC1A might be related to the development of obesity.

Genetic Polymorph isms and Haplotype Analysis of Sweet Taste Receptor TAS1R2 Gene in the Korean Population (한국인의 단맛수용체유전자 TAS1R2 다형성분석 및 일배체형 연구)

  • Lee, Hye-Jin;Bae, Jae-Woong;Kwon, Tae-Jun;SaGong, Bo-Rum;Kim, Un-Kyung
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.462-465
    • /
    • 2010
  • Sweetness plays an important role in providing calories and promoting appetite for food. Since it has been known that genetic factor(s) is involved in individual differences in taste sensitivity in humans, this study aimed to examine genetic variations of the TAS1R2 gene, one of the components for tasting sweet compounds, by using DNA sequencing analysis from 98 unrelated Korean subjects. As a result, 12 different single nucleotide polymorphisms (SNPs) were identified in the hTAS1R2 gene and most of them were nonsynonymous. Also, two novel SNPs were found for the first time in this study. It was noted that the frequencies of these SNPs were common in the Korean population. 20 different haplotypes with coding SNPs (cSNPs) were also found in this study. Three out of these haplotypes were common, showing frequencies of > 10%. The repertoire and frequencies of cSNPs and haplotypes in the hTAS1R2 gene will provide information that will help identify a functional ligand receptor common in the Korean population.

Molecular Aspects of Japanese Encephalitis Virus Persistent Infection in Mammalian Cells

  • Park Sun-Hee;Won Sung Yong;Park Soo-Young;Yoon Sung Wook;Han Jin Hyun;Jeong Yong Seok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.23-36
    • /
    • 2000
  • Japanese encephalitis virus (JEV) is the causative agent of a mosquito-borne encephalitis and is transmitted to human via persistently infected mosquito vectors. Although the virus is known to cause only acute infection, there were reports that showed neurological sequelae, latent infection in peripheral mononuclear cells, and recurrence of the disease after acute encephalitis. Innate resistance of certain cell lines, abnormal SN1 expression of the virus, and anti-apoptotic effect of cullular bcl-2 have been suggested as probable causes of JEV persistence even in the absence of defective interfering (DI) particles. Although possible involvement of DI particles in JEV persistence was suggested, neither has a direct evidence for DI presence nor its molecular characterization been made. Two questions asked in this study are whether the DI virus plays any role in JEV persistent infection if it is associated with and what type of change(s) can be made in persistently infected cells to avoid apoptosis even with the continuous virus replication, DI-free standard stock of JEV was infected in BHK-21, Vero, and SW13 cells and serial high multiplicity passages were performed in order to generate DI particles. There different-sized DI RNA species which were defective in both structural and nonstructural protein coding genes. Rescued ORFs of the DI genome maintained in-frame and the presence of replicative intermediate or replicative form RNA of the DI particles confirmed their replication competence. On the other hand, several clones with JEV persistent infection were established from the cells survived acute infections during the passages. Timing of the DI virus generation during the passages seemed coincide to the appearance of persistently infected cells. The DI RNAs were identified in most of persistently infected cells and were observed throughout the cell maintenance. One of the cloned cell line maintained the viral persistence without DI RNA coreplication. The cells with viral persistence released the reduced but continuous infectious JEV particle for up to 9 months and were refractory to homologous virus superinfection but not to heterologous challenges. Unlike the cells with acute infection these cells were devoid of characteristic DNA fragmentation and JEV-induced apoptosis with or without homologous superinfection. Therefore, the DI RNA generated during JEV undiluted serial passage on mammalian cells was shown to be biologically active and it seemed to be responsible, at least in part, for the establishment and maintenance of the JEV persistence in mammalian cells. Viral persistence without DI RNA coreplication, as in one of the cell clones, supports that JEV persistent infection could be maintained with or without the presence of DI particles. In addition, the fact that the cells with JEV persistence were resistant against homologous virus superinfection, but not against heterologous one, suggests that different viruses have their own and independent pathway for cytopathogenesis even if viral cytopathic effect could be converged to an apoptosis after all.

  • PDF

Cloning and Functional Analysis of Gene Coding for S-Adenosyl-L-Methionine Synthetase from Streptomyces natalensis (Streptomyces natalensis로부터 S-adenosyl-L-methionine synthetase 유전자의 클로닝 및 기능분석)

  • Yoo, Dong-Min;Hwang, Yong-Il;Choi, Sun-Uk
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • S-Adenosyl-L-methionine synthtase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. SAM plays important roles in the primary and secondary metabolism of cells. A metK encoding a SAM-s was searched from Streptomyces natalensis producing natamycin, a predominantly a strong antifungal agent, inhibiting the growth of both yeasts and molds and preventing the formation of aflatoxin in filamentous fungi. To obtain the metK of S. natalensis, PCR using primers designed from the two highly conserved regions for metK genes of Streptomyces strains was carried out, and an intact 1.2-kb metK gene of S. natalensis was cloned by genomic Southern hybridization with PCR product as a probe. To identify the function of the cloned metK gene, it was inserted into pSET152ET for its high expression in the Streptomyces strain, and then introduced into S. lividans TK24 as a host by transconjugation using E. coli ET12567(pUZ8002). The high expression of metK in S. lividans TK24 induced actinorhodin production on R5 solid medium, and its amount in R4 liquid medium was 10-fold higher than that by exconjugant including only pSET152ET.

Cloning and Sequence Analysis of the trpB, trpA and 3' trpC(F) Gens of Vibrio metschnikovii Strain RH530 (Vibrio metschnikovii 균주 RH530의 trpB, trpA 그리고 3' trpC(F) 유전자의 클로닝 및 염기서열 결정)

  • Kwon, Yong-Tae;Kim, Jin-Oh;Yoo, Young-Dong;Rho, Hyune-Mo
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.120-125
    • /
    • 1994
  • The genes, trpB, trpA and 3’ trpC(F) of Vibrio metschnikovii strain RH530 were cloned and sequenced. The trpB and trpA genes had open reading frames of 1,173 bp and 804 bp encoding 391 and 268 amino acids, respectively. The trpB and trpA genes had conventional ribosome-binding sequences and overlapped with each other by one nucleotide, suggesting that these two genes are translationally coupled. 115 nucleotide upstream the trpB start codon, tjere was an incomplete open reading frame of the 3’-end of the trpC(F). The amino acid sequences of trpB, trpA and trpC(F) of V. metschnikovii RH530 had identities of 64.2%, 82.4% and 73.7% respectively, for those of V. parahaemolyticus; 58.7%, 72.3% and 54.9%, respectively, for Salmonella typhimurium; and 42.6%. 54.1% and 12.5%, respectively, for brevibacterium lactofermentum. The genetic organization of these genes, especially in the noncoding region between trpC(F) and trpB, was distinct from that of Enterobacteriaceae.

  • PDF

Expression of an artificial gene encoding a repeated tripeptide lysyl-g1utamyl-tryptophan in Tobacco Plant (담배식물체에서 필수아미노산인 lysyl-glutamyl-tryptophan을 암호화하는 인공유전자의 발현)

  • Lee, Soo-Young;Ra, Kyung-Soo;Baik, Hyung-Suk;Park, Hee-Sung;Cho, Hoon-Sik;Lee, Young-Se;Choi, Jang-Won
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.96-105
    • /
    • 2002
  • To investigate expression of the artificial gene encoding a repeated tripeptide lysyl-glutamyl-tryptophan in tobacco plant, the plant binary vector, pART404 has been constructed, which contains the duplicated CaMV 35S promoter, an artificial gene coding for repetitive polymer (Lys-Glu-Trp)$_{64}$, and nopaline synthase (nos) terminator. The recombinant expression vector was introduced in Nicotiana tabacum (var. Xanthi) via Agrobacterium tumefaciens-mediated trans-formation. The transgenic calli selected by kanamycin containing medium were then regenerated to whole plants. Southern blot analysis indicated that five transgenic plants (No. 1, 7, 9, 43, 45) showed the hybridizing signals at 1.1 kb of the expected size on EcoRI digestion and each of the transgenic plants contained 1 or 3 copies of the artificial gene inserted into its genome. By northern blot analysis, the size of the hybridized total RNA was estimated to be approximately 1.2 kb and the RNA appeared generally to have the integrity. Western blot indicated that the protein was detected at the position of 33 kDa and the expression level of the polypeptide in the transgenic plant (No. 45) was measured to approximately 0.1% of the total protein.

Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae (동양달팽이(Nesiohelix samarangae)의 arginine kinase 유전자 분석 및 발현 패턴에 관한 연구)

  • Jeong, Ji Eun;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Arginine kinase (ArK) is known to play an important role in most invertebrates the level of ATP by phosphorylation of phosphagens in cell and immuninty in living organisms. ArK has been identified in many kinds of organisms ranging from invertebrate to vertebrate. However, no ArK gene has been cloned and investigated from N. samarangae. This leads us to identify ArK cDNA (NsArK) from the expressed sequence tag (EST) sequencing of N. samarangae. Sequence analysis indicated that the coding region of 1,065 bp contains 355 amino acid residues. Molecular phylogenetic analysis shows that NsArK had very high similarities with mollusca and arthropoda. In an attempt to investigate a potential role of NsArK in the digestive gland of N. samarangae, expression patterns were analyzed. RT-PCR analsysis shows that NsArK mRNA is induced in the rane of 1.2 fold at 6 hr by laminarin when compared with the control. The immunnologial and physiological role of NsArK remains to be further investigated in N. samarangae.

The Complete Chloroplast Genome Sequence and Intra-Species Diversity of Rhus chinensis

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Joh, Ho Jun;Kang, Shin Jae;Murukarthick, Jayakodi;Lee, Hyun Oh;Hur, Young-Jin;Kim, Yong;Kim, Kyung Hoon;Lee, Sang-Choon;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2017
  • Rhus chinensis is a shrub widely distributed in Asia. It has been used for traditional medicine and ecological restoration. Here, we report the complete chloroplast genome sequence of two R. chinensis genotypes collected from China and Korea. The assembled chloroplast genome of Chinese R. chinensis is 149,094 bp long, consisting of a large single copy (97,246 bp), a small single copy (18,644 bp) and a pair of inverted repeats (16,602 bp). Gene annotation revealed 77 protein coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenomic analysis of the chloroplast genomes with 11 known complete chloroplast genomes clarified the relationship of R. chinensis with the other plant species in the Sapindales order. A comparative chloroplast genome analysis identified 170 SNPs and 85 InDels at intra-species level of R. chinensis between Chinese and Korean collections. Based on the sequence diversity between Korea and Chinese R. chinensis plants, we developed three DNA markers useful for genetic diversity and authentication system. The chloroplast genome information obtained in this study will contribute to enriching genetic resources and conservation of endemic Rhus species.

Discrimination and Authentication of Eclipta prostrata and E. alba Based on the Complete Chloroplast Genomes

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Lee, Hyun Oh;Park, Hyun-Seung;Jayakodi, Murukarthick;Waminal, Nomar Espinosa;Kang, Jung Hwa;Lee, Taek Joo;Sung, Sang Hyun;Kim, Kyu Yeob;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.334-343
    • /
    • 2017
  • Eclipta prostrata and E. alba are annual herbal medicinal plants and have been used as Chinese medicinal tonics. Both species are widely distributed in tropical and subtropical regions as well as in Korea. Both species have similar morphological features but E. alba has smoother leaf blade margins compared with E. prostrata. Although both species are utilized as oriental medicines, E. prostrata is more widely used than E. alba. Morphological semblances have confounded identification of either species. Here, we report the complete chloroplast genomes of both species to provide an authentication system between the two species and understand their diversity. Both chloroplast genomes were 151,733-151,757 bp long and composed of a large single copy (83,285-83,300 bp), a small single copy (18,283-18,346 bp), and a pair of inverted repeats (25,075-25,063 bp). Gene annotation revealed 80 protein coding genes, 30 tRNA genes and four rRNA genes. A phylogenetic analysis revealed that the genus Eclipta is grouped with Heliantheae tribe species in the Asteraceae family. A comparative analysis verified 29 InDels and 58 SNPs between chloroplast genomes of E. prostrata and E. alba. The low chloroplast genome sequence diversity indicates that both species are really close to each other and are not completely diverged yet. We developed six DNA markers that distinguish E. prostrata and E. alba based on the polymorphisms of chloroplast genomes between E. prostrata and E. alba. The chloroplast genome sequences and the molecular markers generated in this study will be useful for further research of Eclipta species and accurate classification of medicinal herbs.