• Title/Summary/Keyword: DNA 손상

Search Result 546, Processing Time 0.029 seconds

Effect of Cholesterol Supplementation in Freezing Medium on the Survival and Integrity of Human Sperm after Cryopreservation (콜레스테롤이 동결-해동 후 인간정자의 생존과 기능보존에 미치는 영향)

  • Lim, Jung-Jin;Sung, Su-Ye;Kim, Kye-Seong;Song, Seung-Hon;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2008
  • Objective: During cryopreservation process, cold shock and cryo-injury affect the fertilizing capacity of the sperm by damaging cell membranes with loss of functional integrity. A longstanding concept for preventing the cryo-damage is to stabilize the plasma membrane by incorporating cholesterol. This study was to determine the effects of cholesterol in freezing media on the motility and functional integrity of human sperm after cryopreservation. Methods: Control group (non-cholesterol treated) and different concentrations of cholesterol-treated sperm (14 healthy males) were frozen and thawed. After freezing and thawing of sperm, the quality of sperm was evaluated by sperm analysis, acrosome reaction test and sperm chromatin structure assay. Results: When human sperm were incubated in sperm freezing medium (SFM) containing $0.5{\mu}g$ cholesterol and then freezing/thawing, the motility of sperm have significantly improved compared to those untreated cholesterol ($33.46{\pm}1.48%$ vs. $30.10{\pm}1.07%$, p<0.05). The rate of calcium ionophore-induced acrosome reactions in post-thawed sperm was significantly higher than that ($53.60{\pm}1.60%$ vs. $47.40{\pm}1.86%$, p<0.05) in SFM containing cholesterol. Sperm chromatin structure assay revealed that DNA damage to the sperm in the cholesterol-treated group was lower than that of non-treated group. Conclusion: These results suggest that increased cholesterol content of sperm plasma membrane by supplementation of cholesterol in SFM improves sperm motility, capacitation status, and DNA integrity. Therefore, addition of cholesterol into SFM could be a useful for protecting human sperm from cold shock and cryo-injury during cryopreservation.

Antioxidative and Antigenotoxic Effect of Omija (Schizandra chinensis B.) Extracted with Various Solvents (다양한 용매에 의해 추출된 오미자의 항산화능과 항유전독성 효과)

  • Kim, Min-Jung;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.487-493
    • /
    • 2010
  • The purpose of this study was to evaluate antioxidant and antigenotoxic effects of Omija (Schizandra chinensis B.) extracted with various solvents (acetone, ethanol, and methanol). The total polyphenol content (TPC) of methanol extract (ME), ethanol extract (EE) and acetone extract (AE) from Omija were 1183.3, 1009.4, and 747.3 mg/100 g (garlic acid equivalents: GAE), respectively. Antioxidant effects of the Omija extracts was measured by DPPH radical-scavenging activity (RSA) and superoxide dismutase (SOD)-like activity. The $IC_{50}$ for DPPH RSA was in the order of EE $(1411.1\;{\mu}g/mL)$=AE $(1462.0\;{\mu}g/mL)$>ME $(1585.0\;{\mu}g/mL)$. The $IC_{50}$ for SOD-like activities was the highest in ME $(905.7\;{\mu}g/mL)$=EE $(970.3\;{\mu}g/mL)$>AE $(1579.4\;{\mu}g/mL)$. The antigenotoxic effect of Omija on DNA damage induced by $H_2O_2$ in human leukocytes was evaluated by comet assay. $H_2O_2$ induced DNA damage was effectively protected by all of the Omija extracts. Aectone extract of Omija showed the highest antigenotoxic effect ($IC_{50}$ value of AE is $14.6\;{\mu}g/mL$) followed by EE, and ME (21.4 and $34.4\;{\mu}g/mL$), respectively. As a result, we propose that Omija (Schizandra chinensis B.) can serve as a new natural source enriched with potent antioxidant and antigenotoxic agents.

Identification of Antioxidant Compound Derived from Methanolic Extract of Houttuynia Cordata (어성초 메탄올 추출물로부터 항산화 효능을 가진 활성물질의 확인)

  • Kim, Hyeji;Hwang, Heesung;Park, Sumin;Kang, Sungwook;Kim, Hyejeong;Hong, Sugyeong;Kim, Moon-Moo;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.796-804
    • /
    • 2017
  • This study was carried out to evaluate the antioxidant effect of methanolic extract of Houttuynia cordata (HCME) and to identify a compound having antioxidant effect. The ethyl acetate fraction of HCME showed the highest antioxidant effect in organic solvent fractions. The fraction was then separated into 12 fractions by open column chromatography. Among these fractions, the fraction 10 (Fr. 10) with the highest antioxidant activity was isolated, and its antioxidant effect was evaluated by DPPH radical scavenging activity, reducing power, TBARS, cell viability, DNA oxidation and DCF fluorescence. The Fr. 10 at a $64{\mu}g/ml$ showed 60% of inhibitory effect similar to that of vitamin C at $10{\mu}g/ml$, compared with blank group. The Fr. 10 at $64{\mu}g/ml$ showed 264% of reducing power, compared with blank group. TBARS assay showed that the Fr. 10 at $64{\mu}g/ml$ had 35.5% of inhibitory effect similar to that of vitamin E at $1,000{\mu}g/ml$, compared with blank group. The Fr. 10 above $32{\mu}g/ml$ displayed cytotoxicity. However, it was observed that the Fr. 10, above $1{\mu}g/ml$ reduced DNA damage. DCF fluorescence assay showed that the Fr. 10 inhibited oxidative stress by $H_2O_2$ in a dose dependent manner. The compound of Fr. 10 was identified to be rutin whose molecular weight is 610 by the IR and LC-MS analyses. Therefore, these results suggest that the rutin of Fr. 10 could use as a natural antioxidant for development of cosmetics and functional foods.

Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting (황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화)

  • Park, Jeong-Yong;Lee, Ji Yeon;Kim, Hyung Don;Jang, Gwi Yeong;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.5
    • /
    • pp.413-421
    • /
    • 2019
  • Purpose: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. Methods: DPPH (1,1-diphenyl-2-picryl hydrazyl) and $ABTS^+$ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. Results: The DPPH and $ABTS^+$ radical scavenging activities were $564.6{\pm}20.9$ and $108.2{\pm}3.1$ ($IC_{50}$ value) respectively, from the 2R-AM. The total phenol content was $47.80{\pm}1.40mg$ GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were $778.58{\pm}2.72$ and $726.80{\pm}3.45{\mu}g/g$ respectively, from the 2R-AM. Treatment of the HDF cells with R-AM ($50{\sim}200{\mu}g/mL$) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. Conclusion: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.

The Protective Effects of Ethanol Extract of Wild Simulated Ginseng on Carbon Tetrachloride Induced Acute Hepatic Injury in Mouse (사염화탄소 유발 급성 간독성 생쥐모델에서 산양삼 에탄올 추출물의 간 보호 효과)

  • Lee, Soo-Min;Park, Sun-Young;Jang, Gi-Seuk;Ly, Sun-Yung
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.701-710
    • /
    • 2008
  • The wild simulated ginseng (WSG) has been effectively used in folk medicine as a remedy against hepatic disease, hypertension and arthritic disease. However, there is still lack of scientific proof about its antioxidant capability. The present study has been conducted to evaluate the protective role of the WSG ethanol extract in the CCl4-induced oxidative stress and resultant hepatic disfunction in ICR mice. The electron donating abilities and IC50 of WSG etnanol extract were 76.86 ${\pm}$ 1.06% and 33.3 ${\mu}g$/mL (that of ascobic acid was 16.5 ${\mu}g$/mL), respectively. Total antioxidant status of WSG extract was 2.13 ${\pm}$ 0.06 mmoL/mg, while the values of ascorbic acid and BHT were 3.63 ${\pm}$ 0.06 and 3.12 ${\pm}$ 0.02, respectively. ICR mice (aged 3weeks) were fed for 4 weeks on AIN-93M diet and had free access to food and water. The animals were divided into three groups: normal group (intraperitoneally (i.p) injected with PBS at 100 ${\mu}L$/mouse), group C; CCl4-induced and without any treatment. (i.p injected only PBS, 100 ${\mu}L$ /mice), group G; CCl4-induced and treated with WSG (i.p injected with 5 mg WSG extract per mouse, suspended in 100 ${\mu}L$ phosphate buffer). After the i.p. injection of WSG or PBS (5 times for 7weeks), all mice were administered CCl4 in olive oil at the last day of the experiment, except for normal group. The normal group was administered only olive oil. Determination of plasma triglyceride, total cholersterol, fasting glucose and GPT activity was performed using automatic blood analyzer. To evaluate the protective effect against the oxidative stress, DNA fragmentation and TBARS were determined in blood leucocytes and RBC and hepatocyte, respectively. Body and organs weights and food intake did not show significant differences among the groups. Blood total cholesterol of group G was similar to that of normal group, which was the lowest in group C. The fasting blood glucose level was the highest in normal group (205.20 ${\pm}$ 135.24), which were decreased in group C (134.2 ${\pm}$ 79.31) and group G (126.48 ${\pm}$ 77.05). TBARS values in a red blood cell and hepatic tisuue homogenate were lower in group G comparing to the group C. DNA% in tail, tail length (TL) and tail moment (TM) of blood leucoocytes showed the highest values in group C (20.11 ${\pm}$ 2.47, 17.36 ${\pm}$ 2.58, 94.11 ${\pm}$ 12.29) and they were significantly diminished in group G (9.63 ${\pm}$ 1.19, 7.04 ${\pm}$ 1.50, 38.64 ${\pm}$ 7.60). In conclusion, wild simulated ginseng might be a protective agent against the oxidative stress.

In vitro Inhibitory Effect of Aged Black Garlic Extract with Antioxidant Activity on MMP-2 and MMP-9 Related to Metastasis (In vitro에서 항산화 효능이 있는 흑마늘 추출물의 MMP-2 및 MMP-9에 대한 활성 억제효과)

  • Lee, Soo-Jin;Nam, Hyang;Kim, Moon-Moo;Jang, Ho-Jung;Park, Jung-Ae;Kim, Byung-Woo;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.760-767
    • /
    • 2010
  • The oxidative damage of lipids, protein, and DNA is known to be involved in not only chronic inflammations such as arthritis, hepatitis, nephritis, gastritis, colitis, and periodontitis but also metastasis. It has given impetus to searching for natural compounds without toxicity, which prevent the development of these diseases. The direct scavenging effects of aged black garlic extract (ABGE) were evaluated in vitro on DPPH radical, hydroxyl radical, hydrogen peroxide, and genomic DNA damage related to oxidative stress. Furthermore, its antioxidant effect on lipid peroxidation was investigated in human fibrosarcoma cells (HT1080), which were exposed to the hydroxyl radical generated by the Fenton reaction. It was observed that ABGE exhibited a greater inhibitory effect on hydrogen peroxide than other reactive oxygen species, and also blocked DNA oxidation and lipid peroxidation induced by the hydroxyl radical. The oxidative stress in live cells was also inhibited in the presence of ABGE. In addition, its inhibitory effects on the activity and expression of MMP-2 and -9 related to metastasis were determined using gelatin zymography and western blot. The data showed that it inhibited MMP-2 and -9 in PMA-stimulated HT1080 cells. Therefore, these results suggest that ABGE show potential as an excellent agent for prevention of metastasis related to oxidative stress.

Effects of Gamma-ray Irradiation on Growth Characteristics and DNA Damage in Licorice (Glycyrrhiza uralensis) (감마선 조사가 감초(Glycyrrhiza uralensis)의 초기 생육 및 DNA 손상에 미치는 영향)

  • Ryu, Jaihyunk;Im, Seung Bin;Kim, Dong Sub;Ahn, Joon-Woo;Kim, Jin-Baek;Kim, Sang Hoon;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • This study was conducted to determine the optimal dose of gamma-ray on the growth and nucleus DNA damage for mutation breeding in licorice. Gamma-rays irradiated to dry seeds with various doses (0 to 1000 Gy). Significant decreases in germination rate (%), survival rate (%) and growth characteristics (plant height, number of leaves, root length and fresh weight) were observed by dose of increased. $LD_{50}$ (lethal dose) was approximately 400 Gy to 500 Gy. Also, reduction doses ($RD_{50}$) of plant height, number of leaves, root length and flash weight were 428 Gy, 760 Gy, 363 Gy and 334 Gy, respectively. It is supplest that the optimal dose of gamma irradiation for licorice mutation induction might be about 400 Gy in this study. We also conducted comet assay to observe nucleus DNA damage due to gamma irradiation. In comet assay, a clear difference was identified over 300 Gy treatments. With increasing doses of gamma-ray in the range of 100 to 1000 Gy, the rate of head DNA was decreased significantly from 92.88% to 73.09%. Tail length(${\mu}m$) was increased as the dose of increased over 300 Gy. Growth characteristics (Germination rate, Survival rate, plant height, number of leaves, root length and fresh weight) were highly negatively ($P{\leq}0.01$) correlated with dose. While the tail length was highly positively ($P{\leq}0.01$) correlated with dose.

Hepatoprotective Effects of the Extracts of Alnus japonica Leaf on Alcohol-Induced Liver Damage in HepG2/2E1 Cells (알코올로 유도된 간손상 모델 HepG2/2E1 세포에서 오리나무 잎 추출물의 간보호효과)

  • Bo-Ram Kim;Tae-Su Kim;Su Hui Seong;Seahee Han;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Do-Yun Jeong;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.120-129
    • /
    • 2024
  • Alcoholic liver disease (ALD) is a significant risk factor in the global disease burden. The stem bark of the Betulaceae plant Alnus japonica, which is indigenous to Korea, has been used as a popular folk medicine for hepatitis and cancer. However, the preventive effect of Alnus japonica leaf extracts on alcohol-related liver damage has not been investigated. The objective of this study was to investigate the hepatoprotective effects of the extracts of Alnus japonica leaf (AJL) against ethanol-induced liver damage in HepG2/2E1 cells. Treatment with AJL significantly prevented ethanol-induced cytotoxicity in HepG2/2E1 cells by reducing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This protective effect was likely associated with antioxidant potential of AJL, as evidenced by the attenuation of reactive oxygen species (ROS) and malondialdehyde (MDA) production and restoration of the depleted glutathione (GSH) levels in ethanol-induced HepG2/2E1 cells. Our findings suggest that FCC might be considered as a useful agent in the prevention of liver damage induced by oxidative stress by increasing the antioxidant defense mechanism.

Cyclins and Cancer (Cyclin들과 암)

  • Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.123-129
    • /
    • 1995
  • 장차 세포증식과 분화의 전환에 있어서 세포주기의 구성요소들과 Rb 사이의 상호관계 및 세포주기의 조절과 DNA 손상에 대한 p53의 역할을 함께 상세하게 �P혀야 한다. 형질전환된 경우에는 p16과 p21을 포함하여 관련된 CDI들에 의한 cyclin과 CDK의 복합체의 조절에 있어서 중요한 변화들을 야기시키므로 CDI들의 불활성과 발암현상과의 정확한 인과관계를 �P혀내야 한다. 발아 또는 분열효모균에서 Sic 1과 Rum 1과 같은 cyclin-CDK의 중요한 조절인자들이 확인되었는데, 포유동물에 있어서 이러한 단백들에 대한 대응물들을 기대해보며, 체크포인트와 세포사망기전 및 암세포들에 있어서 탈조절에 대한 이해가 새로운 항암치료제 개발에 중요하다고 생각된다.

  • PDF

Gliotoxin-Induced Oxidative Stress Mediates the Apoptotic Death in Human Leukemic HL-60 cells (진균독소 Gliotoxin-유도성 산화적 손상에 의한 Apoptosis)

  • 장해란;김영희;김남송;원진숙;조정환;윤재도;임창인;김호찬;최익준
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • Fungal metabolite, gliotoxin is an epipolythiodioxopiperazin (ETP) class and has various roles including immunomodulatory and apoptotic effects. This study was designed to evaluate the mechanism by which gliotoxin exerts the apoptosis on human promyelocytic leukemic HL-60 cells. Herein, we demonstrated that the gliotoxin decreased the cell viability in a time-dependent manner Gliotoxin-induced cell death was confirmed us apoptosis characterized by chromatin condensation and ladder-pattern fragmentation of genomic DNA. Gliotoxin increased the catalytic activities of caspase-3 and caspase-9. Activation of caspase-3 was further confirmed by degradation of procaspase-3 and poly(ADP-ribose) polymerase (PARP) by gliotoxin in HL-60 cells. Furthermore, gliotoxin induced the changes of mitochondrial transmembrane potential (MTP). Antioxidants, including GSH and NAC, markedly inhibited apoptosis with conistent suppression of enzymatic activity of caspase-3, caspase-9, and MTP loss in gliotoxin-treated cells. Taken together, we suggest that gliotoxin function as an oxidant and ploys proapoptotic roles in HL-60 cells via activation of intrinsic caspase cascades as well as mitochondrial dysfunction.