• 제목/요약/키워드: DMS oxidation

검색결과 10건 처리시간 0.02초

Overall Conversion Efficiency for Dimethylsulfide to Sulfur Dioxide in the Marine Boundary Layer-An Overview

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.107-120
    • /
    • 2002
  • Dimethyl sulfide (DMS) is the major sulfur gas released from the ocean. The atmospheric DMS released from the ocean is oxidized mainly by hydroxyl (OH) radical during the day and nitrate (NO$_3$) radical at night to form sulfur dioxide (SO$_2$) as well as other stable products. The oxidation mechanism of DMS via OH has been known to proceed by two channels; abstraction and addition channels. The major intermediate product of the addition channel has been known to be dimethylsulfoxide (DMSO) based on laboratory chamber studies and field experiments. However, a branching ratio for DMSO formation is still uncertain. The reaction of DMSO with OH ultimately produces SO$_2$and dimethylsulfone. The major product of the abstraction channel has known to be SO$_2$from laboratory chamber studies. But overall conversion efficiency for DMS to SO$_2$from DMS oxidation is still inconsistent in the literature. Based on laboratory and field studies, the conversion efficiency from the abstraction channel is likely to be greater than 0.5, while that from the addition channel is likely to be greater than 0.6. Overall conversion efficiency from DMS to SO$_2$might be greater than 0.5 based on the above two values in the remote marine boundary layer (MBL). This high efficiency in the remote MBL is supported by strong coupling between DMS and SO$_2$measurements with high temporal resolution.

Assessment of DMS photochemistry at Jeju Island During the Asian Oust-Storm Period of Spring 2001 : Comparison of Model Simulations with Field Observations

  • Shon, Zang-Ho;Hilton Swan;Keith N. Bower;Kim, Ki-Hyun;Lee, Gangwoong;Kim, Jiyoung
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.343-343
    • /
    • 2002
  • This study examines the influence of long-range transport of dust particles and air pollutants on both local/regional DMS oxidation chemistry and the distribution of sulfur compounds at Jeju Island (33.17$^{\circ}$ N. 126.10$^{\circ}$ E) during the Asian dust-storm(ADS) period in April 2001. The atmospheric concentrations of these sulfur species were measured at a ground station on Jeju Island. Korea as Part of the ACE-Asia intensive operation. Three ADS events were observed during the periods of 10-12, 13-14. and 25-26 April. respectively. The concentrations of DMS and CS$_2$ were higher during the ADS period than during the non-Asian-dust-storm (NADS) period. Conversely. a difference in SO$_2$ levels during the ADS period was not distinguishable from those during the NADS period. The diurnal variation pattern of DMS observed was largely different from that in the remote marine boundary layer. DMS loss by NO$_3$ in the atmospheric boundary layer was dominant due to significantly high NOx levels influenced by the long-range transport of pollutants from East Asia to Jeju Island The DMS maximum during the ADS period was observed in the late afternoon. The oceanic fluxes of DMS during the ADS and NADS periods were estimated to be 5.7$\pm$2.3 and 2.9 (+2.8/-1.5) mole m$^{-2}$ day$^{-1}$ . respectively. The contribution of oxidized DMS to SO$_2$ levels at Jeju Island during the study period was found to be insignificant.

  • PDF

Evaluation of DMS Flux and Its Conversion to SO(sub)2 in Tropical ACE 1 Marine Boundary Layer

  • Shon, Zang-Ho;Taekyung Yoon;Kim, Jungkwon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권3호
    • /
    • pp.139-148
    • /
    • 2000
  • A mass balance/photochemical modeling approach was used to evaluate the sea-to-air dimethyl sulfide (DMS) fluxes in tropical regions and part of the Southern Ocean. The flux determinations were based on 10 airborne observations by ACE 1 transit flights (i.e., Flights 4-9 and 29-32). The DMS flux values for the tropical regions ranged from 1.0 to 7.4 $\mu$mole/$m^2$/day with an average estimate of 4.2$\pm$2.3 $\mu$mole/$m^2$/day. The seasonal variations in the DMS flux predicted for the equatorial Pacific Ocean based on atmospheric DMS measurements were not entirely consistent with those derived from seawater DMS measurements were not entirely consistent with those derived from seawater DMS measurements reported in previous literature. Inhomogeneities in the DMS flux field were found to cause significant shifts in the atmospheric DMS levels even in the same sampling location. Accordingly, no definitive statement can be made at this stage regarding systematic differences or agreements in the DMS flux estimates from the two approaches. Moreover, this study strongly suggests that DMS oxidation is the most likely dominant source of SO$_2$in tropical regions, which is also supported by another set of compiled observations. Finally, these SO$_2$observations indicate that, when significant data was available for both the boundary and buffer layers, the vertical SO$_2$gradient between these two zones was primarily negative.

  • PDF

도시의 환원 황 화합물의 이산화황으로의 광화학적 변환 (Photochemical Conversions of Reduced Sulfur Compounds to SO2 in Urban Air)

  • 손장호;김기현
    • 한국대기환경학회지
    • /
    • 제20권5호
    • /
    • pp.647-654
    • /
    • 2004
  • This study examines the local oxidation chemistry of reduced sulfur compounds (RSC) in the urban air. The chemical conversion of RSC (such as DMS, $CS_2,\;H_2S,\;DMDS,\;and\;CH_3SH)\;to\;SO_2$ was modeled using a photochemical box model. For our model prediction of the RSC oxidation, measurements were carried out from an urban monitoring station in Seoul (37.6$^{\circ}$N, 127.0$^{\circ}$E), Korea for three separate time periods (Sep. 17~18; Oct 23; and Oct. 27~28, 2003). The results of our measurements indicated that DMS and $H_2S$ were the dominant RSC with their concentrations of 370${\pm}$140 and 110${\pm}$60 pptv, respectively. The conversion of DMDS to $SO_2$ can occur efficiently in comparison to other RSC, but it is not abundant enough to affect their cycles. The overall results of our study indicate that the photochemical conversion of the RSC can contribute ≶ 20% of the observed $SO_2$.

Monitoring of Atmospheric Reduced Sulfur Compounds and Their Oxidation in Gunsan Landfill Areas

  • Kim, Seong-Cheon
    • 한국환경보건학회지
    • /
    • 제33권2호
    • /
    • pp.166-173
    • /
    • 2007
  • 이 연구에서 환원성 황 화합물의 시간적, 공간적 분포 패턴들이 매립과정에 크게 영향 받는 지역에서 조사되었다. 이러한 측정 연구에 기초하여 환원성 황 화합물이 이산화황으로 변환되는 광화학적 작용 규모를 광화학적 상자모델을 이용하여 평가하였다 이 연구는 2004년 3월에서 12월까지 대기 중 환원성 황 화합물 농도를 군산시의 매립장 내부와 인근에서 평가했다. 환원성 황 화합물의 분포가 일반적으로 $H_2S$, DMS, 또는 DMDS들이 대부분인 반해, 그 패턴들은 시료채취 지역과 기간에 따라 다양했다. 군산 매립장에서 $H_2S$, DMS는 연구기간 동안 가장 높은 농도를 나타냈다. 이 지점에서 DMS의 농도는 매립 과정 뿐만 아니라 해양 오염원에 영향을 받는다고 사료되었다. 모든 환원성 황 화합물이 아황산가스의 광화학적 부산물에 대한 상대적 기여도를 비교할 때, 세가지 환원성 황 화합물(DMDS, $H_2S$, 그리고 DMS)이 가장 중요한 물질로 조사되었다.

가축분뇨 호기적 퇴.액비화시 발생하는 기체 중의 황 화합물과 암모니아에 대한 오존처리 효과 (Effect of Ozone Application on Sulfur Compounds and Ammonia Exhausted from Aerobic Fertilization System of Livestock Manure)

  • 정광화;황옥화;;이동현;최동윤;유용희
    • 유기물자원화
    • /
    • 제20권4호
    • /
    • pp.118-126
    • /
    • 2012
  • 본 연구를 위한 실험 장치는 하루에 100톤 규모의 돼지분뇨를 퇴비화와 액비화 하는 방식으로 처리하는 시설에 설치되었다. 액비조의 경우 폭기되는 분뇨의 상층부에 흡입부를 설치하고 기체를 빨아들이는 방식으로 실험용 기체시료를 포집하였다. 포집된 시료는 오존이 존재하는 2 종류의 반응조에 유입된 후 오존과 접촉하는 방식으로 처리되었다. 처리효율 분석은 처리시설 유입부 배관에서 채취한 시료와 오존과 반응한 후 배출되는 배관에서 채취한 시료의 성분함량을 비교하여 결정하였다. 퇴비사의 시료는 교반 후 발생하는 기체를 흡입한 후 액비조에서와 같은 방식으로 처리하고 그 효율을 분석하였다. 오존접촉에 의한 반응효과는 암모니아보다는 황 화합물에서 더 크게 나타났다. 암모니아의 경우 오존접촉 방법에 관계없이 10% 내외의 감소효과를 보였다. 반면에 황 화합물은 오존 처리에 의해 상당량 감소하는 결과를 나타냈다. 액비화 시설로부터 발생된 시료의 경우, 유입부에서 50.091, 4.9089, 27.8109, 0.4683 ppvs 의 농도를 보였던 $H_2S$, MM, DMS, DMDS가 반응 후 유출부에서는 각각 1.2317, 0.3839, 14.7279 0.3145 ppvs 수준으로 감소하였다. 같은 조건으로 호기적 퇴비화 과정에서 발생한 시료를 처리한 결과 $H_2S$, MM, DMS, DMDS 농도는 40.6682, 1.3675, 24.2458, 0.8289 ppvs에서 3.013, 불검출, 8.8998, 0.3651 ppvs 수준으로 감소하였다. 액비화 시설에서 발생하는 시료에 또 다른 형태의 오존을 적용한 결과 $H_2S$, MM, DMS, DMDS가 43.397, 1.4559, 3.6021, 0.4061 ppvs 농도 수준에서 각각 불검출, 불검출, 불검출, 0.2185 ppvs 수준으로 감소하였다.

디젤연소가능 청정연료(ULSD, Bio-Diesel, DME)엔진의 극미세입자 정량화 및 촉매 영향 (Characteristics of Nano-particle Emitted by Auto-ignited Engine with ULSD, Bio-diesel and DME Fuel and Effects of Oxidation Catalyst on Its Reduction)

  • 이진욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.81-89
    • /
    • 2009
  • In this experimental study, the effects of clean alternative fuels compatible with diesel combustion on nano-sized particle emission characteristics were investigated in a 0.5L auto-ignited single-cylinder engine with a compression ratio of 15. Because the number concentration of nano-sized particles emitted by automotive engine, that are suspected of being hazardous to human health and environment, might increase with engine fuel considerably and recently attracted attention. So a ultra-low sulfur diesel(ULSD), BD100(100% bio-diesel) and Di-Methyl Ether(DME) fuels used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that this measurements involving the large proportion of particles under size order of 300nm and number concentration of $4{\times}10^9$ allowed a single or bi-modal distribution to be found at different engine load conditions. Also the influence of oxygen content in fuel and the catalyst could be a dominant factor in controlling the nano-sized particle emissions in auto-ignited engine.

승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구 (Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine)

  • 고아현;황인구;명차리;박심수;최회명
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.755-760
    • /
    • 2010
  • 본 연구는 승용 디젤엔진의 입자상 물질 배출특성에 관한 것으로써, 엔진에서 배출된 입자상 물질이 배기관 및 후처리장치인 디젤산화촉매와 매연여과장치를 통과할 때의 특성 변화를 파악하기 위하여 후처리장치 각각 전 후단 및 배기관에서 직접 측정하였다. 또한 다양한 엔진회전속도 및 부하조건에서 측정함으로써 입자상 물질 배출 맵을 구축하였으며, 디젤산화촉매 및 매연여과장치의 입자상 물질 저감효과에 대해 평가하였다. 뿐만 아니라 배기재순환율과 연료분사시기를 변경시켜 입자상 물질의 배출특성 변화를 파악하였다. 모든 시험에서 입자상 물질을 5~1000nm 크기까지 측정할 수 있는 DMS500을 이용하였다.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.