• 제목/요약/키워드: DMPP

검색결과 73건 처리시간 0.024초

Influence of $\omega$-Conotoxin GVIA, Nifedipine and Cilnidipine on Catecholamine Release in the Rat Adrenal Medulla

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.21-30
    • /
    • 2007
  • The present study was designed to establish comparatively the inhibitory effects of cilnidipine(CNP), nifedipine(NIF), and $\omega$-conotoxin GVIA(CTX) on the release of CA evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. CNP(3 ${\mu}M$), NIF(3 ${\mu}M$), and CTX(3 ${\mu}M$) perfused into an adrenal vein for 60 min produced greatly inhibition in CA secretory responses evoked by ACh($5.32{\times}10^{-3}M$), DMPP($10^{-4}M$ for 2 min), McN-A-343($10^{-4}M$ for 2 min), high $K^+(5.6{\times}10^{-2}M)$, Bay-K-8644($10^{-5}M$), and cyclopiazonic acid($10^{-5}M$), respectively. For the CA release evoked by ACh and Bay-K-8644, the following rank order of potency was obtained: CNP>NIF>CTX. The rank order for the CA release evoked by McN-A-343 and cyclopiazonic acid was CNP>NIF>CTX. Also, the rank orders for high $K^+$ and for DMPP were NIF>CTX>CNP and NIF>CNP>CTX, respectively. Taken together, these results demonstrate that all voltage-dependent $Ca^{2+}$ channels(VDCCs) blockers of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA inhibit greatly the CA release evoked by stimulation of cholinergic(both nicotinic and muscarinic) receptors and the membrane depolarization without affecting the basal release from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effects of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA are mediated by the blockade of both L- and N-type, L-type only, and N-type only VDCCs located on the rat adrenomedullary chromaffin cells, respectively, which are relevant to $Ca^{2+}$ mobilization. It is also suggested that N-type VDCCs play an important role in the rat adrenomedullary CA secretion, in addition to L-type VDCCs.

Cotinine Inhibits Catecholamine Release Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Koh, Young-Yeop;Jang, Seok-Jeong;Lim, Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.747-755
    • /
    • 2003
  • The aim of the present study was to clarify whether cotinine affects the release of catecholamines (CA) from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, in comparison with the response of nicotine. Cotinine (0.3∼3 mM), when perfused into an adrenal vein for 60 min, inhibited CA secretory responses evoked by ACh (5.32 mM), DMPP (a selective neuronal nicotinic agonist, 100 $\mu$M for 2 min) and McN-A-343 (a selective muscarinic $M_1 -agonist, 100 \mu$ M for 2 min) in dose- and time-dependent manners. However, cotinine did not affect CA secretion by high $K^+$ (56 mM). Cotinine itself also failed to affect basal CA output. Furthermore, in the presence of cotinine (1 mM), CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, 10 $\mu$ M) and cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase, 10 \mu$ M) were relative time-dependently attenuated. However, nicotine (30$\mu$ M), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh and high $K^+$, followed by the inhibition later, while it time-dependently depressed the CA release evoked by McN-A-343 and DMPP. Taken together, these results suggest that cotinine inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by the direct membrane-depolarization. It seems that this inhibitory effect of cotinine may be exerted by the cholinergic blockade, which is associated with blocking both the calcium influx into the rat adrenal medullary chromaffin cells and $Ca^{2+}$ release from the cytoplasmic calcium store. It also seems that there is a big difference in the mode of action between cotinine and nicotine in the rat adrenomedullary CA secretion.

저산소증이 흰쥐 관류부신에서 DMPP, McN-A-343, Excess $K^+$ 및 Ach의 카테콜아민 분비작용에 미치는 영향 (Influence of Hypoxia on Catecholamine Secretion Evoked by DMPP, McN-A-343, Excess $K^+$ and ACh from The Perfused Rat Adrenal Gland)

  • 임동윤;허재봉;박유환
    • 대한약리학회지
    • /
    • 제31권1호
    • /
    • pp.63-74
    • /
    • 1995
  • 저산소 상태에서는 부신수질로부터 카테콜아민 (CA) 유리작용이 활성화되지만 반면에 소의 배양 chromaffin cell에서는 고통도의 $K^+$에 의한 CA 분비작용이 억제된다고 알려져 있다. 본 연구에서는 적출 흰쥐 관류부신에서 콜린성 자극과 막탈분극에 의한 CA 분비작용에 대한 저산소증의 영향을 검색하고 그 작용기전을 규명코자 하였다. 본 연구목적을 위하여, 적출 흰쥐 관류부신을 이용, 저산소증이 니코틴($N_1$), 무스카린($M_1$) 수용체 흥분약, 막탈분극 약물, 칼슘채널 활성화 약물, 세포내 칼슘유리 약물 및 ACh에 의한 CA 분비에 미치는 영향을 연구하였으며, 저산소증은 95% 질소 및 5% 이산화탄소 혼합가스를 Krebs액에 주입하여 유발시켰으며, $3{\sim}4$시간동안 유지하였다. 저산소증 유발시, DMPP ($100{\mu}M$), McN-A-343 ($100{\mu}M$), ACh (5.32 mM), Bay-K-8644 ($10{\mu}M$) 및 high $K^+$ (56 mM)에 의한 CA 분비작용을 시간의존적으로 점차 유의성인 감소를 나타내었다. 그러나, cyclopiazonic acid ($10{\mu}M$)에 의한 CA 분비반응에는 하등의 영향을 일으키지 못하였다. 또한 저산소증 자체가 CA의 기초분비 작용에는 영향을 미치지 않았다. 이와같은 실험결과로 보아, 저산소증시 콜린성 자극 및 막탈분극에 의한 CA 분비 작용이 억제되며, 이러한 억제작용은 chromaffin cell내로 $Ca^{++}$ 유입을 직접적으로 억제시키는 결과에 기인되며, 세포내 칼슘저장고로부터 칼슘유리작용과는 관계없는 것으로 사료된다.

  • PDF

가토 측뇌실내 Nicotine 및 Muscarine의 혈압상승작용에 관하여 (Pressor Action of Intracerebroventricular Nicotine and Muscarine in the Rabbit)

  • 이충경
    • 대한약리학회지
    • /
    • 제27권1호
    • /
    • pp.21-31
    • /
    • 1991
  • 미주신경절단 가토에서 니코틴성약물인 nicotine과 DMPP뿐아니라 무스카린성 약물인 muscarine과 bethanechol은 측뇌실내 투여로 모두 혈압상승작용을 나타냈다. Nicotine과 DMPP에 대한 승압반응은 측뇌실내 mecamylamine처리로 현저히 감약되었으나 측뇌실내 pirenzepine처리에 의해서는 영향받지 않았고, muscarine과 bethanechol에 대한 승압반응은 pirenzepin에 의해서는 억제되나 mecamylamine에 의해서는 영향받지 않았다. 이는 뇌내의 니코틴성 수용체 및 무스카린성 수용체가 모두 혈압상승에 관여함을 가리키고 있다. Nicotine과 muscarine에 대한 승압반응은 regitine, reserpine, enalapril, saralasin, SK&F-100273, regitine과 enalapril, regitine과 saralasin의 정맥내 처리에 의해서는 억제되지 않았으며 nicotine에 대한 승압반응은 regitine과 SK&F-100273 두약물의 병용처리에 의해서 억제되었고 muscarine에 의한 승압반응은 regitine, enalapril과 SK&F-100273의 세가지 약물의 병용처리에 의해서만 억제되었다. Nicotine이나 muscarine에 의한 혈압상승상태에서 정맥내 regitine의 투여는 혈압하강을 일으켰으나 enalapril이나 SK&F-100273은 혈압하강을 일으키지 못하였다. Enalapril은 regitine처리나 regitine과 SK&F-100273병용처리 가토에서 nicotine에 의해 상승된 혈압을 하강시키지 못하였으나 SK&F-100273은 regitine처리 가토에서 nicotine에 의한 상승된 혈압을 하강시켰다. Enalapril은 이러한 SK&F-100273의 할압하강작용을 강화시키지 못하였다. Enalapril은 regitine 처리 가토에서 muscarine에 의하여 상승된 혈압은 하강시키지 못하였으나, regitine과 SK&F-100273병용처리 가토에서 muscarine에 의해 상승된 혈압은 하강시켰다. SK&F-100273은 regitine처리 가토에서 muscarine에 의해 상승된 혈압을 하강시키지 못했으나 regitine과 enalapril병용처리 가토의 상승된 혈압은 하강시켰다. 이상의 성적은 뇌실내 nicotine에 의한 혈압상승에는 말초에서 교감신경계와 vasopressin이 관여하며 muscarine에 의한 혈압상승에는 교감신경계, vasopressin 및 angiotensin계가 관여함을 시사하고 있다. Regitine의 정상 가토 혈압하강작용은 enalapril이나 SK&F-100273의 단독처리에 의해서는 영향받지 않았으나 이 두약물을 병용처리시에는 유의하게 강화되었고, 이는 가토 동맥압의 유지에 교감신경, renin-angiotensin 및 vasopressin계가 관여함을 시사하고 있다.

  • PDF

부신에서의 catecholamine분비작용 기전 검색(pentazocine에 의하여)

  • 임동윤;고석태
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.284-284
    • /
    • 1994
  • Pentazocine은 opioid 수용체에 대한 흥분작용과 길항작용을 겸유한 opioid계 약물로 알려져 있다. 본 연구에서 흰쥐 적출 관류부신 으로 부터 pentazocine의 catecholamine (CA) 분비작용을 관찰하여 그 기전을 규명하고 또한 다른 opioid의 작용과 비교하여 얻어진 결과는 다음과 같다. Pentazocine (30-300$\mu\textrm{g}$)을 부신정맥내에 주사하였을때 현저한 용량 의존성의 CA 분비 작용을 나타내었다. Pentazocine의 이러한 CA 분비작용은 chlorisondamine ($10^{-6}$M), naloxone (1.22 $\times$ $10^{-7}$M), morphine (1.73 $\times$ $10^{-5}$M). enkephalin (9.68 $\times$$10^{-6}$M), nicardipine ($10^{-6}$M) 및 TMB-8 ($10^{-5}$M)등의 전처치로 뚜렷이 억제되었으나 pirenzepine (2 $\times$ $10^{-6}$M)의 전처치에 의해서는 영향을 받지 않았다. $Ca^{++}$-free Krebs 용액으로 30분간 관류한 후에 pentazocine의 CA 분비작용은 현저한 감소를 나타내었다. Pentazocine (1.75 $\times$ $10^{-4}$M)을 20분간 관류시킨 후에 ACh (5.32 $\times$ $10^{-3}$M)과 DMPP ($10^{-4}$M)에 의한 CA 분비작용이 의의있게 감약되었다.

  • PDF

부신수질 크로마핀(Chromaffin) 세포를 이용한 승마 추출무의 카테콜라민 분비 저해작용 (The Effects of Cimicifuga Racemosa Extracts on the Inhibition of Catecholamine Secretion in Bovine Chromaffin Cells)

  • 우경철;서병선
    • 생약학회지
    • /
    • 제34권4호통권135호
    • /
    • pp.318-323
    • /
    • 2003
  • Extracts of Black cohosh (Cimicifugae rhizoma) have been used for the treatment of climacteric complaints for decades. A significant number of woman entering menopause exhibit the following symptoms: getting hot flushes, night sweats, irritability, depression, and anxiety, A reduction of the frequency of hot flushes equivalents and hints on the antidepressant activity of Cimcifuga extracts. In the present work, we have screened several 80% ethanol extracts from medicinal plants and found that the extracts from Cimicifugae Rhizoma(Black cohosh:승마) have inhibitory effect on catecholamine secretion in bovine chromaffin cell. Since this extract inhibited 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP)-induced catecholamine secretion, but did not inhibit KCl, bradykinin, and veratridine-evoked case, this inhibitory effect is mediated by nicotinic acetylcholine receptors with noncompetitive manner.

INFLUENCE OF TOTAL GINSENG SAPONIN ON NICOTINIC STIMULATION-INDUCED CATECHOLAMINE SECRETION FROM THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Choi, Hyeon;Hong, Soon-Pyo;Ko, Suk-Tai
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.147-147
    • /
    • 1998
  • The present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of nicotinic receptors from the isolated perfused rat adrenal glands. Total ginseng saponin given (100 $\mu\textrm{g}$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine (5.32 mM)- and DMPP (100 uM, a selective ncotinic receptor agonist)-evoked CA secretory responses were reduced markedly by the pretreatment with the total ginseng saponin at a rate of 100 $\mu\textrm{g}$/6.2 $m\ell$/20 min, respectively.

  • PDF

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Ko, Woo-Seok;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제16권2호
    • /
    • pp.147-160
    • /
    • 2008
  • The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee;Seo, Yu-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.229-239
    • /
    • 2009
  • The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.