Influence of $\omega$-Conotoxin GVIA, Nifedipine and Cilnidipine on Catecholamine Release in the Rat Adrenal Medulla

  • Yu, Byung-Sik (Department of Anesthesiology, College of Medicine, Chosun University) ;
  • Kim, Byeong-Cheol (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2007.02.28

Abstract

The present study was designed to establish comparatively the inhibitory effects of cilnidipine(CNP), nifedipine(NIF), and $\omega$-conotoxin GVIA(CTX) on the release of CA evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. CNP(3 ${\mu}M$), NIF(3 ${\mu}M$), and CTX(3 ${\mu}M$) perfused into an adrenal vein for 60 min produced greatly inhibition in CA secretory responses evoked by ACh($5.32{\times}10^{-3}M$), DMPP($10^{-4}M$ for 2 min), McN-A-343($10^{-4}M$ for 2 min), high $K^+(5.6{\times}10^{-2}M)$, Bay-K-8644($10^{-5}M$), and cyclopiazonic acid($10^{-5}M$), respectively. For the CA release evoked by ACh and Bay-K-8644, the following rank order of potency was obtained: CNP>NIF>CTX. The rank order for the CA release evoked by McN-A-343 and cyclopiazonic acid was CNP>NIF>CTX. Also, the rank orders for high $K^+$ and for DMPP were NIF>CTX>CNP and NIF>CNP>CTX, respectively. Taken together, these results demonstrate that all voltage-dependent $Ca^{2+}$ channels(VDCCs) blockers of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA inhibit greatly the CA release evoked by stimulation of cholinergic(both nicotinic and muscarinic) receptors and the membrane depolarization without affecting the basal release from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effects of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA are mediated by the blockade of both L- and N-type, L-type only, and N-type only VDCCs located on the rat adrenomedullary chromaffin cells, respectively, which are relevant to $Ca^{2+}$ mobilization. It is also suggested that N-type VDCCs play an important role in the rat adrenomedullary CA secretion, in addition to L-type VDCCs.

Keywords

References

  1. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333-339, 1990
  2. Albillos A, Artalejo AR, Lopez MG, Gandia L, Garcia AG, Carbone E. Calcium channel subtypes in cat chromaffin cells. J Physio 477: 197-213, 1994 https://doi.org/10.1113/jphysiol.1994.sp020184
  3. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  4. Artalejo CR, Dahmer MK, Perlman RL, Fox AP. Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physio 432: 681-707, 1991 https://doi.org/10.1113/jphysiol.1991.sp018406
  5. Artalejo CR, Perlman RL, Fox AP. -Conotoxin GVIA blocks a $Ca^{2+}$ current in bovine chromaffin cells that is not of the 'classic' N type. Neuron 8: 85-95, 1992 https://doi.org/10.1016/0896-6273(92)90110-Y
  6. Berridge MJ. Capacitative calcium entry. Biochem J 312: 1-11, 1995 https://doi.org/10.1042/bj3120001
  7. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201-216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  8. Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  9. Cheek TR, Burgoyne RD. Effects of activation of muscarinic receptors on intracellular free calcium and secretion in bovine chromaffin cells. Biochim Biophys Acta 846: 167-173, 1985 https://doi.org/10.1016/0167-4889(85)90122-3
  10. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  11. Douglas WW, Poisner AM. Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature 208: 1102-1103, 1965 https://doi.org/10.1038/2081102a0
  12. Fasolato C, Innocenti B, Pozzan T. Receptor-activated $Ca^{2+}$ influx: how many mechanisms for how many channels. Trends Pharmacol Sci 15: 77-83, 1994 https://doi.org/10.1016/0165-6147(94)90282-8
  13. Friedman DJ, Duckles SP. Influence of age on control of norepinephrine release: $Ca^{2+}$ channels and dopamine D2 receptors. Eur J Pharmacol 252: 1-9, 1994 https://doi.org/10.1016/0014-2999(94)90568-1
  14. Fujii S, Kameyama K, Hosono M, Hayashi Y, Kitamura K. Effect of cilnidipine, a novel dihydropyridine $Ca^{2+}$-channel antagonist, on N-type $Ca^{2+}$ channel in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 280: 1184-1191, 1997
  15. Gandia L, Albillos A, Garcia AG. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun 194: 671-676, 1994 https://doi.org/10.1006/bbrc.1993.1874
  16. Gandia L, Borges R, Albillos A, Garcia AG. Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflugers Arch 430: 55-63, 1995
  17. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  18. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995- 4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  19. Greene LA, Tischler AS. PC12 pheochromocytoma cultures in neurobiological research. Adv Cell Neurobiol 3: 373-414, 1982
  20. Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992- 2998, 1982
  21. Hans M, Illes P, Takeda K. The blocking effects of -conotoxin on Ca current in bovine chromaffin cells. Neurosci Lett 114: 63-68, 1990 https://doi.org/10.1016/0304-3940(90)90429-D
  22. Harish OE, Kao LS, Raffaniello R, Wakade AR, Shneider AS. Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused adrenal medulla. J Neurochem 48: 1730-1735, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb05730.x
  23. Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW. Dominant role of N-type $Ca^{2+}$ channels in evoked release of norepinephrine from sympathetic neurons. Science 239: 57-61, 1988 https://doi.org/10.1126/science.2447647
  24. Hosono M, Fujii S, Himura T, Watanabe K, Hayashi Y, Ohnishi H, Takata Y, Kato H. Inhibitory effect of cilnidipine on vascular sympathetic neurotransmission and subsequent vasoconstriction in spontaneously hypertensive rats. Jpn J Pharmacol 69: 127- 134, 1995b https://doi.org/10.1254/jjp.69.127
  25. Hosono M, Himura T, Watanabe K, Hayashi Y, Ohnishi H, Takata Y, Kato H. Inhibitory effect of cilnidipine on pressor response to acute cold stress in spontaneously hypertensive rats. Jpn J Pharmacol 69: 119-125, 1995a https://doi.org/10.1254/jjp.69.119
  26. Hosono M, Iida H, Ikeda K, Hayashi Y, Dohmoto H, Hashiguchi Y, Yamamoto H, Watanabe N, Yoshimoto R. In vivo and ex vivo Ca-antagonistic effect of 2-methoxyethyl(E)-3-phenyl-2-propen-1-yl(+/-)-1,4-dihydro- 2, 6 - dimethyl - 4 - (3-nitrophenyl) pyridine-3,5-dicarboxylate (FRC-8653), a new dihydropyridine derivative. J Pharmacobiodyn 15: 547-553, 1992a https://doi.org/10.1248/bpb1978.15.547
  27. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363-383, 1989 https://doi.org/10.1085/jgp.94.2.363
  28. Inoue M, Kuriyama H. Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J Physiol (Lond) 436: 511-29, 1991 https://doi.org/10.1113/jphysiol.1991.sp018564
  29. Kasai H, Aosaki H, Fukuda J. Presynaptic $Ca^{2+}$-antagonist omega-conotoxin irreversibly blocks N-type $Ca^{2+}$ channels in chick sensory neurons. Neurosci Res 4: 228-235, 1987 https://doi.org/10.1016/0168-0102(87)90014-9
  30. Kim SJ, Lim W, Kim J. Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffin cells. Brain Res 675: 289-296, 1995 https://doi.org/10.1016/0006-8993(95)00085-5
  31. Kimura T, Shimamura T, Satoh S. Effects of pirenzepine and hexamethonium on adrenal catecholamine release in responses to endogenous and exogenous acetylcholine in anesthetized dogs. J Cardiovasc Pharmacol 20: 870-874, 1992 https://doi.org/10.1097/00005344-199212000-00004
  32. Kimura T, Takeuchi A, Satoh S. Inhibition by omega-conotoxin GVIA of adrenal catecholamine release in response to endogenous and exogenous acetylcholine. Eur J Pharmacol 264: 169-175, 1994 https://doi.org/10.1016/0014-2999(94)00459-5
  33. Ladona MG, Aunis D, Gandia AG, Garcia AG. Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochem 48: 483-490, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  34. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27: 53-67, 1991
  35. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115-125, 1992 https://doi.org/10.1007/BF02974085
  36. Lomax RB, Michelrna P, Nunez L, Garcia-Sancho J, Garcia AG, Montiel C. Different contributions of L- and Q-type $Ca^{2+}$ channels to $Ca^{2+}$ signals and secretion in chromaffin cell subtypes. Am J Physiol 272: C476-C484, 1997 https://doi.org/10.1152/ajpcell.1997.272.2.C476
  37. Lopez MG, Albillos A, de la Fuente MT, Borges R, Gandia L, Carbone E, Garcia AG, Artalejo AR. Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Archiv 427: 348-354, 1994a https://doi.org/10.1007/BF00374544
  38. Lopez MG, Shukla A, Garcia AG, Wakade AR. A dihydropyridineresistant component in the rat adrenal secretory response to splanchnic nerve stimulation. J Neurochem 58: 2139-2144, 1992 https://doi.org/10.1111/j.1471-4159.1992.tb10956.x
  39. Lopez MG, Villarroya M, Lara B, Sierra RM, Albillos A, Garcia AG, Gandia L. Q- and L-type $Ca^{2+}$ channels dominate the control of secretion in bovine chromaffin cells. FEBS Letters 349: 331- 337, 1994b https://doi.org/10.1016/0014-5793(94)00696-2
  40. Martin JR. Pressor effect of the putative M1 muscarinic receptor agonist McN-A-343 in the conscious rat. Life Sci 59: 1839-1852, 1996 https://doi.org/10.1016/S0024-3205(96)00531-0
  41. McCleskey EW, Fox AP, Feldman D, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D. $\omega$-Conotoxin: direct and persistent block of specific types of $Ca^{2+}$ channels in neurons but not muscle. Proc Natl Acad Sci USA 84: 4327-4331, 1987
  42. Miljanich GP, Ramachandran J. Antagonists of neuronal calcium channels: structure, function and therapeutic implications. Annu Rev Pharmacol Toxicol 35: 707-734, 1995 https://doi.org/10.1146/annurev.pa.35.040195.003423
  43. Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME. P-type calcium channels blocked by the spider toxin - agatoxin-IVA. Nature 355: 827-829, 1992 https://doi.org/10.1038/355827a0
  44. Misbahuddin M, Oka M. Muscarinic stimulation of guinea pig adrenal chromaffin cells stimulates catecholamine secretion without significant increase in $Ca^{2+}$ uptake. Neurosci Lett 87: 266-370, 1988 https://doi.org/10.1016/0304-3940(88)90459-4
  45. Mullikin-Kilpatrick D, Treistman SN. Inhibition of dihydropyridinesensitive $Ca^{2+}$ channels by ethanol in undifferentiated and nerve growth factor-treated PC12 cells: interaction with the inactivated state. J Pharmacol Exp Ther 272: 489-497, 1995
  46. Nagayama T, Yoshida M, Suzuki-kusaba M, Hisa H, Kimura T, Satoh S. Effect of cilnidipine, a novel dihydropyridine $Ca^{2+}$ channel blocker, on adrenal catecholamine secretion in anesthetized dogs. J Cardiovasc Pharmacol 32: 479-484, 1998 https://doi.org/10.1097/00005344-199809000-00020
  47. Nakashima M, Kou M, Hashitani H, Chen G, Ono H, Kuriyama H, Suzuki H. Action of FRC-8653 on smooth muscle cells of the rabbit mesenteric artery. Jpn J Pharmacol 57: 51-61, 1991 https://doi.org/10.1254/jjp.57.51
  48. Nakazato Y, Oleshanskly M, Tomita U, Yamada Y. Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 93: 101-109, 1988 https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  49. O'Farrell M, Ziogas J, Marley PD. Effects of N- and L-type calcium channel antagonists and (?-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. Br J Pharmacol 121: 381-388, 1997 https://doi.org/10.1038/sj.bjp.0701131
  50. Oike M, Inoue Y, Kitamura K, Kuriyama H. Dual action of FRC8653, a novel dihydropyridine derivative, on the $Ca^{2+}$ current recorded from the rabbit basilar artery. Circ Res 67: 993- 1006, 1990 https://doi.org/10.1161/01.RES.67.4.993
  51. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Usdin E, Kopin IJ, Brachas J ed, Catecholamines: Basic and Clinical Frontiers. Pergamon Press, Oxford, p 70-72, 1979
  52. Plummer MR, Logothetis DE, Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2: 1453-1463, 1989 https://doi.org/10.1016/0896-6273(89)90191-8
  53. Regan LJ, Sah DW, Bean BP. $Ca^{2+}$ channels in rat central and peripheral neurons: high threshold current resistant to dihydropyridine blockers and $\omega$-conotoxin. Neuron 6: 269-280, 1991 https://doi.org/10.1016/0896-6273(91)90362-4
  54. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303: 535-537, 1982 https://doi.org/10.1038/303535a0
  55. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  56. Shimamura T, Kimura T, Satoh S. Effects of pirenzepine, AF-DX 116 and gallamine on the release of catecholamines from the dog adrenal gland in response to splanchnic nerve stimulation: interaction of M1 and M2 receptors with nicotinic receptors. J Pharmacol Exp Ther 257: 369-373, 1991
  57. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent K+ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  58. Takahashi M, Tsukui H, Hamada H. Neuronal differentiation of $Ca^{2+}$ channel by nerve growth factor. Brain Res 341: 381-384, 1985 https://doi.org/10.1016/0006-8993(85)91079-0
  59. Takemura H, Hughes AR, Thastrup O, Putney JW Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264: 12266-12272, 1989
  60. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  61. Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type $Ca^{2+}$ channels and apamin-sensitive $K^+$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266(5 Pt 1): C1432-C1439, 1994 https://doi.org/10.1152/ajpcell.1994.266.5.C1432
  62. Uceda G, Artalejo AR, Lopez MG, Abad F, Neher E, Garcia AG. $Ca^{2+}$-activated $K^+$ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol 454: 213-230, 1992 https://doi.org/10.1113/jphysiol.1992.sp019261
  63. Uneyama H, Takahara A, Dohmoto H, Yoshimoto R, Inoue K, Akaike N. Blockade of N-type $Ca^{2+}$ current by cilnidipine (FRC- 8653) in acutely dissociated rat sympathetic neurones. Br J Pharmacol 122: 37-42, 1997 https://doi.org/10.1038/sj.bjp.0701342
  64. Uneyama H, Uchida H, Yoshimoto R, Ueno S, Inoue K, Akaike N. Effects of a novel antihypertensive drug, cilnidipine, on cate-cholamine secretion from differentiated PC12 cells. Hypertension 31: 1195-1199, 1998 https://doi.org/10.1161/01.HYP.31.5.1195
  65. Usowicz M, Porzig M, Becker C, Reuter H. Differential expression by nerve growth factor by two types of $Ca^{2+}$ channels in rat phaeochromocytoma cell line. J Physiol (Lond) 426: 95-116, 1990 https://doi.org/10.1113/jphysiol.1990.sp018128
  66. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel $Ca^{2+}$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  67. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs Arch Pharmacol 328: 382-387, 1985 https://doi.org/10.1007/BF00692905
  68. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676
  69. Yamada Y, Teraoka H, Nakazato Y, Ohga A. Intracellular $Ca^{2+}$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular $Ca^{2+}$. Neurosci Lett 90: 338-342, 1988 https://doi.org/10.1016/0304-3940(88)90212-1