• Title/Summary/Keyword: DME fuel(Dimethyl Ether Fuel)

Search Result 88, Processing Time 0.021 seconds

Parametric Study of DME Spray Combustion Characteristics in the Diesel-like Condition (디젤엔진조건에서 DME분무의 연소특성 해석)

  • Bae, Jun-Kyeung;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.163-170
    • /
    • 2009
  • The present study has numerically investigates the vaporization, auto-ignition and combustion processes in the high-pressure and high-temperature conditions encountered in the diesel engine. In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes compared to conventional hydrocarbon liquid fuels, the sequence of the comparative analysis has been systematically made for DME and n-Heptane liquid fuels. Computations for DME fuel are made for two cases including constant fuel mass flow rate condition and fixed heat release rate. Based on numerical results, the discussions are made for the detailed combustion processes of DME and n-Heptane spray.

  • PDF

Determination Method of Hydrocarbon Compounds in DME-LPG Blending Fuels by Gas Chromatography with Deans Switching (Deans Switching을 이용한 가스크로마토그래피에서 DME-LPG 혼합연료의 탄화수소 화합물 분석방법)

  • Youn, Ju Min;Park, Cheon Kyu;Yim, Eui Soon;Jung, Choong Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.353-357
    • /
    • 2012
  • The new qualitative and quantitative analytical method for hydrocarbon compounds in DME-LPG blending fuel, mixing dimethyl ether (DME) with liquefied petroleum gas (LPG), by using gas chromatography (GC) was investigated. It is difficult to analyze all components of DME-LPG blending fuel by using single column in GC due to consisting of the non-polar LPG and the polar DME which is oxygen-containing compound. Therefore, it has been introduced the Deans switching system, which are useful for analyzing mixtures of a very different nature and/or target analytes in very complex matrix. This technique is to control the pressure between two columns and to selectively change the path of effluent flows to either one of two columns. As a result, we found that DME and LPG can be completely separated at the different columns and the determination of all hydrocarbon compounds in DME-LPG blending fuel can be achieved to this method qualitatively and quantitatively during the operation of one injection. In addition, this method can be applied to the determination of trace components of by-product, such as methanol, methyl formate and ethyl methyl ether, which will be derived from DME synthesis process.

PAH and Soot Formation Characteristics of DME/Ethylene Fuel (DME/에틸렌 연료의 PAH 및 매연의 생성 특성)

  • Yoon, Seung-Suk;Lee, Sang-Min;Chung, Suk-ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • In order to investigate the effect of dimethyl ether (DME) on PAH and soot formation, the fuel has been mixed to the counter-flow diffusion flames of ethylene. Laser-induced incandescence and laser-induced fluorescence techniques were employed to measure relative concentrations of soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that even though pure DME flame produces the minimal amount of PAH and soot, the mixture fuel of DME and ethylene could increase PAH and soot formation, as compared to those of pure ethylene flame. This implies that even though DME has been known to be a clean fuel for soot formation, the mixture fuel of DME and the hydrocarbon fuel could produce enhanced production of soot. Numerical simulation demonstrated that methyl (CH$_{3}$) radical generated by the initial pyrolysis of DME can be contributed to the enhancement of PAH and soot formation, through the formation of propargyl (C$_{3}$H$_{3}$) radical.

GE7EA Gas Turbine Combustion Performance Test of DME and Methane (DME와 메탄의 GE7EA 모사가스터빈 연소성능시험)

  • Lee, Min-Chul;Seo, Seok-Bin;Chung, Jae-Hwa;Joo, Youg-Jin;Ahn, Dal-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3270-3275
    • /
    • 2007
  • DME (Dimethyl Ether, $CH_3OCH_3$) has highly attracted attention as an alternative fuel for transportation, power generation and LPG substitute owing to its easy transportation and cleanliness. This study was conducted to verify the combustion performance and to identify potential problems when DME is fuelled to a gas turbine. GE7EA gas turbine of Pyong-Tak power plant was selected as a target to apply the DME. Combustion tests were conducted by comparing DME with methane, which is a major component of natural gas, in terms of combustion instability, $NO_X$ and CO emissions, and the outlet temperature of the combustion chamber. The results of the performance tests show that DME is very clean but has a low combustion efficiency in low load condition. From the results of the fuel nozzle temperature we have ascertained that DME is easy to flash back, and this property should be considered when operating a gas turbine and retrofitting a burner.

  • PDF

An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions (고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구)

  • Bang, Seung-Hwan;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel (DME연료 디젤 엔진에서의 연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

Feasibility Test of LPG Vehicles by Using DME-LPG Blends (DME-LPG 혼합연료를 사용한 LPG 차량의 실증평가)

  • Youn, Jumin;Lee, Minho;Park, Cheonkyu;Hwang, Inha;Ha, Jonghan;Kang, Yong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-41
    • /
    • 2015
  • Dimethyl ether (DME) can be used as a clean diesel alternative fuel due to the high cetane number and low emission, it can also be applied to automotive fuel as a blended liquefied petroleum gas (LPG) because physical properties are similar to those of LPG. In this study, feasibility test of LPG vehicle using blended DME-LPG fuel was investigated. Three types of fuel supply such as LPLi (Liquid phase LPG injection), LPGi (Liquid phase gas injection) and mixer type were selected to consider the LPG fuel-injection system. The performance characteristics of LPG vehicle were examined by using LPG and blended DME-LPG fuel in order to compare the exhaust emissions (CO, THC, $NO_X$) and fuel economy. The emissions and fuel economy of DME-LPG blend fuel were comparable to those of LPG with increasing driving distance.

A Study on Separation Process for Over 95 wt% DME Recovery from DME Mixture Gases (DME 혼합가스로부터 95 wt% 이상의 DME 회수를 위한 분리공정 연구)

  • Lim, Gye-Gyu;Park, Seung-Kyu;Rho, Jea-Hyun;Baek, Young-Soon
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.287-294
    • /
    • 2009
  • In order to separate the fuel-grade DME from the product of a direct DME synthesise reaction, containing 19~20% of DME, an absorption column and a purification column were employed. In the DME absorption column, the flow rate of the methanol required to recover more than 99% of DME at 50 bar was estimated by the correlation obtained from the lab-scale experiments. In the DME purification column, the maximum DME recovery of 98.2% could be obtained even from the side stream at the 3rd stage above the feed stage, since the feed stream originated from the product of the absorption column had already contained a large amount of DME (20~30 mol%) and only a small amount of light products such as $CO_2$ and $N_2$ (5~10 mol%).

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

Effects of the EGR and Injection Pressure on the Combustion and Emission Characteristics of DME Commonrail Diesel Engine (DME를 연료로 하는 커먼레일 디젤 엔진의 연소와 배기 특성에 미치는 분사압력과 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kim, Hyun-Chul;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.84-91
    • /
    • 2006
  • In this study, the effect of EGR and fuel injection pressure on the characteristics of combustion and emission performance of the common-rail diesel engine is investigated using DME fuel as a smoke-free alternative fuel. Because the heating value and density of DME fuel are lower than those of diesel fuel, the injection duration of the DME engine is relatively longer than the injection duration of the diesel engine with the same injection pressure. However, the higher injection pressure can shorten the injection duration for the DME engine. Although the smoke level of the DME engine is much lower than that of the diesel engine, the NOx is at a level similar to that of the diesel engine. As a proposed solution for this, the EGR technique is empirically applied to the DME engine. In the experiments, the injection pressure was changed from 200bar to 400bar, and the EGR rate was limited under 40%. With the same injection timing and fuel amount, the experiment results indicated that the increase of injection pressure led to the increase of IMEP while decreasing HC and CO emissions. However, the NOx emission tends to increase as the injection pressure becomes higher. On the other hand, as the EGR rate was increased, NOx emission and A/F were reduced while the HC and CO emissions were increased. Because HC and CO emissions have the critical A/F point where the emissions of HC and CO are rapidly increased, it is proposed that the EGR rate must be limited under the critical EGR rate.