DOI QR코드

DOI QR Code

A Study on Separation Process for Over 95 wt% DME Recovery from DME Mixture Gases

DME 혼합가스로부터 95 wt% 이상의 DME 회수를 위한 분리공정 연구

  • Lim, Gye-Gyu (Chemical and Industrial Technology R&D Center, Department of Chemical Engineering, Hoseo University) ;
  • Park, Seung-Kyu (Chemical and Industrial Technology R&D Center, Department of Chemical Engineering, Hoseo University) ;
  • Rho, Jea-Hyun (Chemical and Industrial Technology R&D Center, Department of Chemical Engineering, Hoseo University) ;
  • Baek, Young-Soon (Research and Development Center, KOGAS)
  • 임계규 (호서대학교 화학기술개발연구소, 화학공학과) ;
  • 박승규 (호서대학교 화학기술개발연구소, 화학공학과) ;
  • 노재현 (호서대학교 화학기술개발연구소, 화학공학과) ;
  • 백영순 (한국가스공사 연구개발원)
  • Published : 2009.12.31

Abstract

In order to separate the fuel-grade DME from the product of a direct DME synthesise reaction, containing 19~20% of DME, an absorption column and a purification column were employed. In the DME absorption column, the flow rate of the methanol required to recover more than 99% of DME at 50 bar was estimated by the correlation obtained from the lab-scale experiments. In the DME purification column, the maximum DME recovery of 98.2% could be obtained even from the side stream at the 3rd stage above the feed stage, since the feed stream originated from the product of the absorption column had already contained a large amount of DME (20~30 mol%) and only a small amount of light products such as $CO_2$ and $N_2$ (5~10 mol%).

DME (dimethyl ether, $CH_3OCH_3$) 직접합성 반응기로부터 생산되는 DME 혼합물(DME: 19~20 mol%)을 DME 흡수탑과 DME 정제탑 장치 2기를 사용하여 대체연료로 사용할 수 있는 순도로 분리하였다. DME 흡수탑에서는 메탄올을 세정용매로 사용하였고 운전압력 50 bar내에서 원료 중 DME를 탑 하부로 99% 이상 회수하는 것을 목적으로 하였으며, 이를 위해 실험실 규모의 실험장치를 통해 얻은 실험식을 사용하여 운전압력 50 bar내에서 DME를 99% 회수하기 위해 필요한 메탄올의 유량을 산출하였다. 그리고 95 wt% 이상의 DME 순도를 얻기 위해 DME 정제탑을 사용하였으며, 경질 생성물(이산화탄소, 질소 등)이 소량(5~10 mol%)이고, 중간생성물(DME)의 양(20~30 mol%)이 적지 않은 것을 감안하여 측면흐름(4단)의 액상 생성물로서 최대 98.2 wt% 순도의 DME를 얻었다.

Keywords

References

  1. Pyo, Y. D., Nam, S. H., Kim, G. C., and Lee, Y. J., "Performance and Exhaust Emissions of DME Fuel for Diesel alternate fuel," J. Korean Soc. Energ. Eng., 11. 39-44 (2002).
  2. Wakai, K., Nishida, K., Kobayashi, T., and Hiroyasu, H., "Spray and Ignition Characteristics of Dimethyl Ether Injected by a D.I. Diesel Injector," The fourth International Symposium COMODIA 98, July 20-23, Kyoto, Japan, 537-542 (1998).
  3. Kim, J. H., ParK, M. J., Kim, S. J., Joo, O. S., and Jung, K. D., "DME Synthesis from Synthesis Gas on the Admixed Catalysts of $Cu/ZnO/Al_2O_3$ and ZSM-5," Appl. Catal., 264. 37-42 (2004). https://doi.org/10.1016/j.apcata.2003.12.058
  4. Choi, C. W., Cho, W. I., Ju, W. S., Lee, S. H., Beak, Y. S., and Row, K. H. "The Experimental Study on the Direct Synthesis of DME (Dimethyl Ether) in the Fixed Bed Reactor," Trans. Korean Hydrogen New Energ. Soc., 15, 283-260 (2004).
  5. Lee, S. B., Ahn, S. J., Cho, B. H., Cho, W. I., Beak, Y. S., Park D. K., and Yoon, E. S., "Analysis of Fixed Bed Reactor for the synthesis of DME from Methane," J. Korean Inst. Gas, 8, 42-49 (2004)
  6. Lim, G. G., Cho, J. h., Beak, Y. S., Cho, W. I., and Rho, J. H., "A Study on Separation Process Development of Fuel Grade DME," Applied Chem., 10, 280-283 (2006).
  7. Lim, G. G., Baek Y. S., and Cho, W. I., "A Study on Separation Process Development for the Mixture of DME + Methanol + $CO_2$ from Dme Synthesis Process," Korean Soc. Ind.Eng.Chem., 9, 193-196 (2005).
  8. Renon, H., and Prausnitz, J. M., "Local Composition in Thermodynamics Excess Functions for Liquid Mixtures," AIChE J., 14, 135-144 (1968). https://doi.org/10.1002/aic.690140124
  9. Eleisch, T. H., and Meurer, P. Co., "Consider the DME Alternative for Diesel Engines," Fuel Techno. Manage., 4, 54-56 (1996).
  10. Lim, G. G., Baek, Y. S., and Cho, J. H., "A Study on $CO_2$ Separation Process Development from DME Synthesis Process," Korean Soc. Atmos. Environ., 39, 131-132 (2005)