DOI QR코드

DOI QR Code

Effects of Operating Parameters on the Removal Performance of Nitrate-nitrogen by Electrodialysis

전기투석을 이용한 질산성 질소의 제거 시 운전인자의 영향

  • Lee, Gwan-Ho (Dept. of Environmental Engineering, Dong-eui University) ;
  • Lee, Gang-Choon (Dept. of Chemical Engineering, Dong-eui University)
  • 이관호 (동의대학교 환경공학과) ;
  • 이강춘 (동의대학교 화학공학과)
  • Published : 2009.12.31

Abstract

To evaluate the feasibility of electrodialysis for nitrate-nitrogen removal from wastewater, the effect of operating parameters on the removal of nitrate-nitrogen was experimentally estimated. The limiting current density (LCD) linearly increased with the nitrate concentration and the flow rate. The time when the nitrate concentration of diluate reached at 20 mg/L was linearly proportional to concentration of diluate, and the concentration of concentrate did not affect the removal rate. Increase in the flow rate gave a positive effect on the removal rate and became insignificant at How rates greater than 1.6 L/min. The removal rate increased with the applied voltage, but the increment in the removal rate decreased as the applied voltage approached the LCD. From the operation of the electrodialysis module used in this research, the flow rate of 1.6 L/min and the voltage corresponding to the 80~90% of LCD were found be the optimum operating condition for the nitrate removal from highly concentrated nitrate-nitrogen solutions.

고농도의 질산성 질소를 함유하는 폐수의 처리에 전기투석법의 적용 가능성을 평가하기 위하여 전기투석 공정의 운전인자 중 유입농도, 운전전압, 그리고 유속이 질산성 질소의 제거효율에 미치는 영향을 실험적으로 평가하였다. 한계전류밀도는 유입농도와 유입유속이 증가함에 따라 선형적으로 증가하였다. 유입농도와 목표농도에 도달하는 시간은 직선적으로 비례관계를 보였고, 농축액의 초기농도가 제거속도에 미치는 영향은 거의 없었다. 저속에서 유입유속의 증가는 제거속도를 증가시켰지만, 일정속도 이상에서는 제거속도에 미치는 영향이 미미하였다. 운전전압의 증가에 따라 제거속도는 증가하였지만 그 증가속도는 점차 저하되었다. 본 연구에 사용된 전기투석모듈에서 고농도의 질산성 질소를 제거하는 최적 운전조건으로 유입유속 1.6 L/min, 한계전류밀도의 80~90%의 해당하는 운전전압이 권장된다.

Keywords

References

  1. Kalagiri, J. R., ''Nitrate Removal from Groundwater Using Cyclically Operated Packed-Bed Bio-Denitrification Reactors," M.S. Thesis, University of Nebraska-Lincoln, U.S.A., 1994.
  2. Pontius, F. W., ''Nitrate and Cancer. Is there a Link?," J. Am. Water Works Ass., 85(4), 12-14 (1993).
  3. Yoon, T., Shon, Z. R., Lee, G., Moon, B., Noh, B., and Sung, N., "Parametric Studies on the Performance of Anion Exchange for Nitrate Removal," Korean J. Chem. Eng., 18(2), 170-177 (2001). https://doi.org/10.1007/BF02698455
  4. Min, J. H., and Kim, R. S., "The Removal of Nitrate-nitrogen from Ground Water by Electrodialysis," J. Korean Soc. Water Wastewater, 22(3), 307-314 (2008).
  5. Del Pino, M. P., and Durham, B., "Wastewater Reuse through Dual-membrane Processes: Opportunities for Sustainable Water Resources," Desalination, 124, 271-277 (1999). https://doi.org/10.1016/S0011-9164(99)00112-5
  6. Martin, C. J., Kartinen, Jr.v E. O., and Condon, J., "Examination of Processes for Multiple Contaminant Removal from Groundwater," Desalination, 102, 35-45 (1995). https://doi.org/10.1016/0011-9164(95)00039-5
  7. Strathmann, H., Ion Exchange Membrane Separation Processes, Membrane Science and Technology Series, 9, Elsevier B.V., Amsterdam, Netherlands, 2004, pp. 147-184.
  8. Sata, T., Ion Exchange Membranes: Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge, UK, 2004, pp. 215-250.
  9. Kim, K. S., Kim, S. R., and Jung, I. H., "The Characteristics of Ni Plating Rinse Wastewater Treatment by a Electrodialysis Apparatus," J. Korean Soc. Environ. Anal., 4(4), 241-249 (2001).
  10. Cowan, D. A., and Brown, J. H., "Effect of Turbulent on Limiting Current in Electrodialysis Cells," Ind. Eng. Chem., 51, 1445-1448 (1959). https://doi.org/10.1021/ie50600a026
  11. Tanaka, Y., "Concentration Polarization in Ion-exchange Membrane Electrodialysis-the Events Arising in a Flowing Solution in a Desalting Cell," J. Membrane Sci., 216, 149-164 (2003). https://doi.org/10.1016/S0376-7388(03)00067-X
  12. Tanaka, Y., "Current Density Distribution, Limiting Current Density and Saturation Current Density in an Ion-exchange Membrane Electrodialyzer," J. Membrane Sci., 210, 65-75 (2002). https://doi.org/10.1016/S0376-7388(02)00376-9