• Title/Summary/Keyword: DM degradability

Search Result 138, Processing Time 0.024 seconds

Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In situ and In vitro Measurements

  • Kamalak, Adem;Canbolat, Onder;Gurbuz, Yavuz;Ozkan, Cagri Ozgur;Kizilsimsek, Mustafa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1249-1254
    • /
    • 2005
  • The aim of this study was to determine the effect of maturity stage on the nutritive value of wild mustard straw in terms of chemical composition, in situ, in vitro dry matter degradability and calculated ME. The nutritive values of wild mustard, Sinapsis arvensis hays harvested at three stages were evaluated by chemical composition, in vitro gas production and in situ dry matter degradation methods. Gas production or dry matter (DM) degradation were determined at 0, 3, 6, 12, 24, 48, 72 and 96 h and their kinetics were described using the equation p = a+b(1-e$^{-ct}$). Maturity had a significant effect on both the chemical composition and degradability of wild mustard. Neutral detergent fibre (NDF) and acid detergent fibre (ADF) (p<0.001) increased with increasing maturity whereas the crude protein (CP) (p<0.001) decreased. The gas produced after 96 h incubation ranged between 64.7 and 81.5 ml per 0.200 g of dry matter. The gas production (ml) at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The gas production at all incubation times and estimated parameters (a, b (a+b), metabolizable energy (ME) and organic matter digestibility (OMD)) were negatively correlated with NDF and ADF. The DM disappearance after 96 h incubation ranged between 50.8 and 76.1%. The in situ DM disappearance at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The in situ dry matter disappearance at all incubation times and some estimated parameters (c, a, b and effective dry matter degradability (EDMD)) were negatively correlated with NDF and ADF but positively correlated with CP. The nutritive value of wild mustard continually changed as it matured. Wild mustard, harvested at the proper stage of maturity offers considerable potential as a high quality forage for ruminants during the winter feeding period. The present study showed that if higher quality forage is an objective, wild mustard should be harvested at the early flowering stage.

Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

  • Zhang, Hui Ling;Chen, Yong;Xu, Xiao Li;Yang, Yu Xia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2013
  • This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen ($NH_3$-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields ($p{\leq}0.001$). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

Effect of Thermal Processing of Cereal Grain on the Performance of Crossbred Calves Fed Starters Containing Protein Sources of Varying Ruminal Degradability

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1239-1244
    • /
    • 2000
  • In order to investigate the effect of incorporation of thermally processed cereal (maize) grain and differently degradable protein sources in the calf starter, twenty four newly born crossbred $(Bos\;taurus{\times}Bos\;indicus)$ calves were assigned at random to six diets in a $3{\times}2$ factorial design involving three protein sources viz. groundnut meal (GN), cottonseed meal (CS) and meat and bone meal (MB), each along with two differently processed grain, namely ground raw (R) and pressure cooked (P) maize. The corresponding calf starters with green oats (Avena sativa) were given free-choice from 14 d onwards till the end of the 90 d experimental feeding. A restricted milk diet was fed till the age of weaning at 60 d. Total DM intake was not affected by cereal or protein sources. However, daily intake of DM (59.23 vs 66.45 g) and CP (12.38 vs 14.10 g) per kg $W^{0.75}$ was reduced (p<0.05) due to cereal processing. Better (p<0.05) feed and protein efficiencies after weaning and during entire period in calves fed processed maize resulted in a trend of higher $(p{\leq}092)$ growth rate especially when GN was the source of protein. In comparison among protein sources, calves fed MB diets tended to grow faster $(p{\leq}098)$ concurrent with a higher CP intake before weaning. It is thus evident that thermal processing of maize in the calf starter seems to improve calf performance. Moreover, results indicated that feeding of protein and starch sources of matching ruminal degradability may prove beneficial for early growth of crossbred calves.

Effects of Supplementation of Mixed Cassava (Manihot esculenta) and Legume (Phaseolus calcaratus) Fodder on the Rumen Degradability and Performance of Growing Cattle

  • Thang, C.M.;Sanh, M.V.;Wiktorsson, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.66-74
    • /
    • 2008
  • Two experiments were conducted to assess the effect of replacing a conventional concentrate with mixed cassava (Manihot esculenta) foliage and legume (Phaseolus calcaratus) foliage. In Exp. 1, three rumen fistulated crossbred cows were used for in sacco rumen degradability studies. In vitro gas production was also studied. In Exp. 2, 11 crossbred F2 heifers (Red Sindhi$\times$Holstein Friesian), with initial live weight of $129{\pm}6kg$ and aged six months, were allocated in a Completely Randomized Design (CRD) to evaluate a mixture (ratio 3:1) of cassava and legume foliage (CA-LE feed) as a protein source compared to a traditional concentrate feed (Control) in diets based on fresh elephant grass (Pennisetum purpureum) and urea treated rice straw ad libitum. The Control feed was replaced by the CA-LE feed at levels of 0% (Control), 40% (CA-LE40), and 60% (CA-LE60) based on dry matter (DM). The in sacco degradation of CA-LE feed was higher than Control feed (p<0.05). After 48 h incubation the degradation of CA-LE feed and Control feed was 73% vs. 58% of DM and 83% vs. 65% of CP, respectively. The gas production of CA-LE feed was also significantly higher than of Control feed during the first 12 h of incubation. The results of the performance study (Exp. 2) showed that the level of CA-LE feed in the concentrate had no effect on total dry matter intake (p>0.05), but live weight gains (LWG) in CA-LE40 and CA-LE60 were significantly higher (551 and 609 g/d, respectively) than in the Control group (281 g/d). The intake of CP was higher (p<0.05) for the treatments CA-LE40 and CA-LE60 (556 and 590 g/d, respectively) compared to that of Control (458 g/d), while there was no significant difference in ME intake. The feed conversion ratio was 16.8, 9.0 and 7.9 kg DM/kg LWG in Control, CA-LE40 and CA-LE60, respectively. The feed cost of CA-LE40 and CA-LE60 corresponded to 43% and 35%, respectively, of the feed cost of Control feed. The best results were found when CA-LE feed replaced 60% of DM in Control feed and considerably decreased feed cost. It is concluded that feeding cassava foliage in combination with Phaseolus calcaratus legume as a protein supplement could be a potentially valuable strategy which leads to reduced feed costs and a more sustainable system in smallholder dairy production in Vietnam.

Influence of Varying Dry Matter and Molasses Levels on Berseem and Lucerne Silage Characteristics and Their In situ Digestion Kinetics in Nili Buffalo Bulls

  • Touqir, N.A.;Khan, M. Ajmal;Sarwar, M.;Nisa, M.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.887-893
    • /
    • 2007
  • Influences of forage DM and addition of cane molasses on silage characteristics of berseem (Trifolium alexandrium) and lucerne (Medicago sativa) and their ruminal digestion kinetics in Nili buffaloes were studied. Berseem and lucerne fodders (at one tenth bloom) were ensiled with wheat straw in laboratory silos to achieve 20, 30, 40% forage DM and without wheat straw (control); each forage DM level was supplemented with 2, 4 and 6% of cane molasses at ensiling. The pH and lactic acid contents of berseem and lucerne silages were affected by both forage DM and addition of molasses. Dry matter, CP and true protein (TP) of berseem and lucerne silages were affected by forage DM at ensiling but were not affected by the addition of cane molasses. Higher DM, CP and TP losses were observed when berseem and lucerne fodders were ensiled either without wheat straw or with wheat straw to achieve 20% and 40% forage DM at ensiling compared with 30% DM at ensiling. Fiber fractions (NDF, ADF, hemicellulose and cellulose) of berseem silage and lucerne silage were significantly increased with increasing forage DM at ensiling. Addition of cane molasses did not affect the DM, CP, TP and fiber fractions of both berseem and lucerne silages. Berseem and lucerne ensiled at 30% DM with 2% cane molasses were screened for comparative ruminal digestion kinetics with their respective fodders. Addition of wheat straw to berseem or lucerne fodder at ensiling depressed DM and NDF ruminal degradability. However, ruminal lag time, rate of degradation and extent of digestion of silages were similar to their respective fodders. In conclusion, berseem and lucerne could be ensiled with wheat straw to increase their DM to 30% along with 2% molasses for buffaloes.

A study on the optimal thickness of corn flakes produced by using the pressurized steam chamber

  • Ahn, Jun-Sang;Shin, Jong-Suh;Kim, Min-Ji;Son, Gi-Hwal;Gil, Deok-Yun;Kwon, Eung-Gi;Park, Byung-Ki
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.475-484
    • /
    • 2020
  • This study was conducted to evaluate the effect of the thickness of corn flakes produced by pressurized steam chamber (PSC) on rumen fermentation characteristics and nutrient degradability in Hanwoo and Holstein cows. Corn flakes were treated by PSC, in three groups based on corn flake thickness: < 2.5 mm (T1), 2.5-3.0 mm (T2), and > 3.0 mm (T3). Corn flake thickness significantly influenced pH (p < 0.01) and propionate concentration (p < 0.05) and slightly but not significantly influenced acetate, butyrate, and total-volatile fatty acids (T-VFA) concentrations. The dry matter (DM) degradability increased significantly with a reduction in corn flake thickness (p < 0.01), being significantly greater in T1 and T2 than T3 groups (p < 0.01) and similar between T1 and T2 groups throughout whole incubation time. Also, starch degradability was the lowest in T3 groups than others (p < 0.01). Thus, the present results showed that considering the production efficiency and economic feasibility, the optimal thickness of corn flakes produced in a PSC is recommended to be 2.5-3.0 mm.

Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

  • Gao, Wei;Chen, Aodong;Zhang, Bowen;Kong, Ping;Liu, Chenli;Zhao, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.485-493
    • /
    • 2015
  • This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

Effects of Sown Season and Maturity Stage on In vitro Fermentation and In sacco Degradation Characteristics of New Variety Maize Stover

  • Tang, S.X.;Li, F.W.;Gan, J.;Wang, M.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Tan, Z.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • The effects of seedtime and maturity stage on nutritive value of five maize stover varieties, including conventional maize (Kexiangyu 11, CM), fodder maize (Huqing 1, FM), high oil maize (Gaoyou 115, HOM), sweet maize (Kexiangtianyu 1, SM) and waxy maize (Kexiangluoyu 1, WM), were examined based on chemical composition, in vitro gas production and in situ incubation techniques. Maize stover was sampled at d 17 and d 30 after tasseling, and designated as maturity stage 1 and stage 2, respectively. The average dry matter (DM) organic matter (OM), crude protein (CP) and fiber contents were the greatest for HOM, SM and FM, respectively. CM had the highest in vitro organic matter disappearance (IVOMD) and volatile fatty acid (VFA) concentration. The highest ammonia nitrogen ($NH_3$-N) concentration in the incubation solution, and effective degradability of DM ($ED_{DM}$) and neutral detergent fiber ($ED_{NDF}$) were observed in SM. Advanced maturity stage increased (p<0.05) DM content, $ED_{DM}$ and $ED_{NDF}$, but decreased (p<0.05) OM and CP contents, and decreased (p<0.05) b and a+b values, IVOMD and molar proportion of valerate in the incubation solution for maize stover. Maize sown in summer had greater (p<0.05) OM content, but lower DM, CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content compared with maize sown in spring. Maize sown in summer had greater (p<0.001) IVOMD, $NH_3$-N concentration in the incubation solution and $ED_{NDF}$, but lower (p<0.01) ratio of acetate to propionate compared to maize sown in spring. The interaction effect of variety${\times}$seedtime was observed running through almost all chemical composition, in vitro gas production parameters and in situ DM and NDF degradability. The overall results suggested that SM had the highest nutrient quality, and also indicated the possibility of selecting maize variety and seedtime for the utilization of maize stover in ruminants.

Effects of Ensiling Alfalfa with Whole-crop Maize on the Chemical Composition and Nutritive Value of Silage Mixtures

  • Ozturk, Durmus;Kizilsimsek, Mustafa;Kamalak, Adem;Canbolat, Onder;Ozkan, Cagri Ozgur
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.526-532
    • /
    • 2006
  • The aim of this study was to evaluate the chemical composition, in vitro DM degradability, ME and OMD of alfalfa-maize silage mixtures in comparison to pure maize and alfalfa silages, and to test the existence of associative effects of ensiling alfalfa forage with whole-crop maize using the in vitro gas production technique. Ensiling alfalfa with whole-crop maize had a significant (p<0.001) effect on chemical composition, pH, in vitro DM degradability, OMD and estimated ME values of mixtures. DM content of the resultant silages significantly increased with increasing proportion of whole-crop maize in the mixtures, whereas the pH value, crude protein (CP), acid detergent fibre (ADF) and ash contents of mixtures decreased due to the dilution effect of whole-crop maize which was low in CP, ADF and ash. The pH values of all alfalfa-maize silage mixtures were at the desired level for quality silage. Gas production of alfalfa-maize silage mixtures at all incubation times except 12 h increased with increasing proportion of whole-crop maize. When alfalfa was mixed with whole-crop maize in the ratio 40:60, ME and OMD values were significantly (p<0.001) higher than other silages. Maximum gas production ($A_{gas}$) ranged from 65.7 to 78.1 with alfalfa silage showing the lowest maximum gas production. The results obtained in this study clearly showed that maximum gas production increased with increased percentage of whole-crop maize in the silage mixtures (r = 0.940, p<0.001). It was concluded that ensiling alfalfa with whole-crop maize improved the pH, OMD and ME values. However, trials with animals are required to see how these differences in silage mixtures affect animal performance.

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.