DOI QR코드

DOI QR Code

Effects of Ensiling Alfalfa with Whole-crop Maize on the Chemical Composition and Nutritive Value of Silage Mixtures

  • Ozturk, Durmus (Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Animal Science) ;
  • Kizilsimsek, Mustafa (Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Crop Science) ;
  • Kamalak, Adem (Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Animal Science) ;
  • Canbolat, Onder (Bursa Uludag University, Faculty of Agriculture, Department of Animal Science) ;
  • Ozkan, Cagri Ozgur (Kahramanmaras Sutcu Imam University, Faculty of Agriculture, Department of Animal Science)
  • Received : 2005.05.03
  • Accepted : 2005.09.30
  • Published : 2006.04.01

Abstract

The aim of this study was to evaluate the chemical composition, in vitro DM degradability, ME and OMD of alfalfa-maize silage mixtures in comparison to pure maize and alfalfa silages, and to test the existence of associative effects of ensiling alfalfa forage with whole-crop maize using the in vitro gas production technique. Ensiling alfalfa with whole-crop maize had a significant (p<0.001) effect on chemical composition, pH, in vitro DM degradability, OMD and estimated ME values of mixtures. DM content of the resultant silages significantly increased with increasing proportion of whole-crop maize in the mixtures, whereas the pH value, crude protein (CP), acid detergent fibre (ADF) and ash contents of mixtures decreased due to the dilution effect of whole-crop maize which was low in CP, ADF and ash. The pH values of all alfalfa-maize silage mixtures were at the desired level for quality silage. Gas production of alfalfa-maize silage mixtures at all incubation times except 12 h increased with increasing proportion of whole-crop maize. When alfalfa was mixed with whole-crop maize in the ratio 40:60, ME and OMD values were significantly (p<0.001) higher than other silages. Maximum gas production ($A_{gas}$) ranged from 65.7 to 78.1 with alfalfa silage showing the lowest maximum gas production. The results obtained in this study clearly showed that maximum gas production increased with increased percentage of whole-crop maize in the silage mixtures (r = 0.940, p<0.001). It was concluded that ensiling alfalfa with whole-crop maize improved the pH, OMD and ME values. However, trials with animals are required to see how these differences in silage mixtures affect animal performance.

Keywords

References

  1. Albrecht, K. A. and R. E. Muck. 1991. Proteolysis in ensiled forage that vary in tannin concentration. Crop. Sci. 31:464-469 https://doi.org/10.2135/cropsci1991.0011183X003100020048x
  2. Anil, L., J. Park and R. H. Phipps. 2000. The potential of foragemaize intercrops in ruminant nutrition. Anim. Feed Sci. Technol. 86:157-164 https://doi.org/10.1016/S0377-8401(00)00176-0
  3. AOAC. 1990. Official Method of Analysis. 15th. edn. Association of Official Analytical Chemist, Washington, DC. USA
  4. Bodine, A. B., G. D. O'dell, M. E. Moore and C. K. Wheat. 1983. Effect of dry matter content and length of ensiling on quality of alfalfa silage. J. Dairy Sci. 66:2434-2437 https://doi.org/10.3168/jds.S0022-0302(83)82102-X
  5. Bolsen, K. K., J. T. Dickerson, B. E. Brent, R. N. Sonon, B. S. Dalke, C. Lin and J. E Boyer. 1993. Rate and extent of top spoilage losses in horizontal silos. J. Dairy Sci. 76:3041-3062 https://doi.org/10.3168/jds.S0022-0302(93)77644-4
  6. Buxton, D. R. 1996. Quality related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 59:37-49 https://doi.org/10.1016/0377-8401(95)00885-3
  7. Coblentz, W. K., J. O. Fritz, K. K. Bolsen and R. C. Cochran. 1996. Quality changes in alfalfa during storage in bales. J. Dairy Sci. 79:873-885 https://doi.org/10.3168/jds.S0022-0302(96)76436-6
  8. Davies, D. R., R. J. Merry, A. P. Willams, E. L Bakewell, D. K Leemans and J. K. S. Tweed. 1998. Proteolysis during ensilage of forages varying in soluble sugar content. J. Dairy Sci. 81:444-453 https://doi.org/10.3168/jds.S0022-0302(98)75596-1
  9. De Boever, J. L., B. G. Cottyn, J. M. De Brabander, J. M Vanacker and Ch. V. Bouchque. 1997. Prediction of the feeding value of maize silages by chemical parameters, in vitro digestibility and NIRS. Anim. Feed Sci. Technol. 66:211-222 https://doi.org/10.1016/S0377-8401(96)01101-7
  10. Evitayani, L. W., A. Fariani, T. Ichinohe, S. A. Abdulrazak and T. Fujihara. 2004. Comparative rumen degradability of some legume forages between wet and dry season in west Sumatra, Indonesia. Asian-Aust. J. Anim. Sci. 17(8):1107-1111 https://doi.org/10.5713/ajas.2004.1107
  11. Fonseca, A. J. M., A. R. J. Cabrita, A. M. Lage and E. Gomes. 2000. Evaluation of the chemical composition and the particle size of maize silages produced in north-west of Portugal. Anim. Feed Sci. Technol. 83:173-183 https://doi.org/10.1016/S0377-8401(00)00102-4
  12. France, J., M. S Dahanoa, M. K Theodorou, S. J. Lister, D. R Davies and D. Isaac. 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feed. J. Theoritical. Biol. 163:99-111 https://doi.org/10.1006/jtbi.1993.1109
  13. Getachew, G., M. Blummel, H. P. S Makkar and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds. Anim. Feed Sci. Technol. 72:261-281 https://doi.org/10.1016/S0377-8401(97)00189-2
  14. Ghedalie, B. D. and A. Miron. 2001. Digestion by sheep of monosaccharide constituents of direct cut alfalfa silage made with SO2 treated wheat straw. Anim. Feed Sci. Technol. 92(3- 4):175-183 https://doi.org/10.1016/S0377-8401(01)00260-7
  15. Goering, H. K. and P. J. Van Soest. 1975. Forage fiber analyses. (Apparatus, reagents, procedures, and some applications). Agriculture Handbook No: 379. United States Department of Agriculture. p. 20
  16. Haddad, S. G. and R. J. Grant. 2000. Influence of nonfiber carbohydrate concentration on forage fiber digestion in vitro. Anim. Feed Sci. Technol. 86:107-115 https://doi.org/10.1016/S0377-8401(00)00160-7
  17. Henderson, N. 1993. Silage additives. Anim. Feed Sci. Technol, 45:35-56 https://doi.org/10.1016/0377-8401(93)90070-Z
  18. Kamalak, A., O. Canbolat, Y. Gurbuz, C. O. Ozkan and M. Kizilsimsek. 2005. Determination of nutritive value of wild mustard, Sinapsis arvensis harvested at different maturity stages using in situ and in vitro measurements. Asian-Aust. J. Anim. Sci. 18(9):1249-1254 https://doi.org/10.5713/ajas.2005.1249
  19. Kilic, A. 1984. Silo yemi (Silage Feed). Bilgehan Press, Izmir, Turkey, p. 350
  20. McAllister, T. A., R. Fenjuk, Z. Mir, L. B. Selinger and K. J. Cheng. 1998. Inoculants for alfalfa silage: Effects of aeorobic stability, digestibility and the growth performance of feedlot steers. Livestock Prod. Sci. 53:171-181 https://doi.org/10.1016/S0301-6226(97)00150-4
  21. McDonald, P., A. R Henderson and S. J. E. Heron. 1991. The Biochemistry of Silage. Second Edition. Chalcombe Publications. p. 344
  22. Meeske, R. and H. M. Basson. 1998. The effect of a lactic acid bacterial inoculant on maize silage. Anim. Feed Sci. Technol. 70:239-247 https://doi.org/10.1016/S0377-8401(97)00066-7
  23. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 92:217-222
  24. Menke, K. H. and H. Steingass. 1989. Estimation of energetic feed value obtained from chemical analysis an in vitro gas production using rumen fluid. Anim. Feed Sci. Technol. 28:7- 55
  25. Miron, J. and D. Ben-Ghedalia. 1997. Digestibility by sheep of direct cut alfalfa silage made with ozonated cotton stalks. Anim. Feed Sci. Technol. 67:311-317 https://doi.org/10.1016/S0377-8401(97)00014-X
  26. Muck, R. F. 1988. Factors influencing silage quality and their implications for management. J. Dairy Sci. 71:2992-3002 https://doi.org/10.3168/jds.S0022-0302(88)79897-5
  27. Ots, M. and O. Kart. 2003. Effect of grain species on purine derivative excretion via urine in feeding leguminous silage to rams. Vet. Zootech. 22(44):73-77
  28. Pearse, E. S. and H. O. Hartley. 1966. Biometrika tables for statisticians. Vol. 1. Camb. University Press
  29. Phillips, W. A. and L. C. Penlum. 1984. Digestibility of wheat and alfalfa silage with and without wheat straw. J. Anim. Sci. 59:476-482 https://doi.org/10.2527/jas1984.592476x
  30. Rosales, M., M. Gill, C. D. Wood and A. W. Speedy. 1998. Associative effect in vitro of mixtures of tropical fodder trees. In: In vitro Techniques for measuring nutrient supply to ruminants. (Ed. E. R. Deaville, E. Owen, A. T. Adesogan and C. Rymer). BSAS Occasional Publications. Edinburgh, UK. pp. 175-177
  31. Ross, G. J. S. 1987. Maximum likelihood program (a manual). Rothamsted Experimental Station. Harpenden, UK
  32. Rubanza, C. D. K., M. N. Shem, R. Otsyina, T. Ichinohe and T. Fujihara. 2003. Nutritive Evaluation of Some Browse Tree Legume Foliages Native to Semi-arid Areas in Western Tanzania. Asian-Aust. J. Anim. Sci. 16(10):1429-1437 https://doi.org/10.5713/ajas.2003.1429
  33. Singh, K., H. Honig, M. Wermke and E. Zimmer. 1996. Fermentation pattern and changes in cell wall constituents of straw-forage silages, straw and partners during storage. Anim. Feed Sci. Technol. 61:137-153 https://doi.org/10.1016/0377-8401(96)00953-4
  34. Statistica, 1993. Statistica for windows release 4.3, StatSoft, Inc. 1993. Tulsa, OK
  35. Strockey, W. L. 1990. Evaluation of sodium acetate-treated alfalfa silage for lactating dairy cows. J. Prod. Agric. 3:381-385 https://doi.org/10.2134/jpa1990.0381

Cited by

  1. Chemical composition of alfalfa silage with waste date and its feeding effect on ruminal fermentation characteristics and microbial protein synthesis in sheep vol.101, pp.3, 2016, https://doi.org/10.1111/jpn.12563
  2. digestibility of the silage mixtures vol.63, pp.4, 2017, https://doi.org/10.1111/grs.12168
  3. digestibility on the Tibetan Plateau vol.63, pp.4, 2017, https://doi.org/10.1111/grs.12173
  4. ‘KR107070’ and a propionic acid-based preservative on the fermentation characteristics, nutritive value and aerobic stability of alfalfa-corn mixed silage ensiled with four ratios pp.17446961, 2018, https://doi.org/10.1111/grs.12178
  5. Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): In vitro Dry Matter Digestibility and Gas Production for a Range of Forages vol.20, pp.8, 2006, https://doi.org/10.5713/ajas.2007.1208
  6. Comparison of In vitro Gas Production, Metabolizable Energy, Organic Matter Digestibility and Microbial Protein Production of Some Legume Hays vol.20, pp.4, 2006, https://doi.org/10.5713/ajas.2007.517
  7. Effect of Cattle Slurry on Growth, Biomass Yield and Chemical Composition of Maize Fodder vol.21, pp.11, 2006, https://doi.org/10.5713/ajas.2008.80190
  8. Effect of Replacing Corn Silage with Whole Crop Rice Silage in Total Mixed Ration on Intake, Milk Yield and Its Composition in Holsteins vol.22, pp.4, 2006, https://doi.org/10.5713/ajas.2009.80556
  9. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios vol.74, pp.2, 2006, https://doi.org/10.1111/gfs.12431
  10. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture vol.270, pp.None, 2020, https://doi.org/10.1016/j.anifeedsci.2020.114702
  11. Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage vol.11, pp.2, 2006, https://doi.org/10.3390/agriculture11020174
  12. Nutritional Quality and In Vitro Rumen Fermentation Characteristics of Silage Prepared with Lucerne, Sweet Maize Stalk, and Their Mixtures vol.11, pp.12, 2021, https://doi.org/10.3390/agriculture11121205