• Title/Summary/Keyword: DLC coating.

Search Result 145, Processing Time 0.031 seconds

Present status of Standardization of Diamond-like Carbon Coating in Japan

  • Hiratsuka, Masanori;Ohtake, Naoto;Saitoh, Hidetoshi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.12.2-12.2
    • /
    • 2011
  • Diamond-like carbon (DLC) coatings are used nowadays in various applications such as a protective coating against wear or corrosion in automotive parts, and recently its use is more and more apparent in particular biomedical applications [1]. The Japanese Ministry of Economy, Trade and Industry has started a program of collaborative study for industrial standardization of DLC films and their evaluation techniques. Japan New Diamond Forum (JNDF), Nanotec Corporation and the Nagaoka University of Technology are conducting this program. This project includes national organizations (businesses, universities, and research facilities), encompassing a wide range of requirements. JNDF organize Japanese project committee and working group. The purpose of this report is to discuss standardization and classification of DLC coatings.

  • PDF

The Effects of Surface Roughness on Wear-life of DLC Coating in Dry Sliding (모재의 표면 거칠기가 DLC 코팅의 마멸수명에 미치는 영향)

  • Lee Young-Ze;Shin Kyung-Seob;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2005
  • Dry sliding wear resistance of DLC coated silicon disk with different surface roughness has been evaluated using a ball-on-disk sliding tester. It was found that the transfer layer formed on steel ball produced a low friction regime and the formation of transfer layer was more active with increasing the substrate surface roughness. Wear life of DLC coating was increased as increasing the real area of contact.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.

Experimental Control Characteristic Investigation of Ball Bearing Guided Linear Motion Stage with Diamond-like Carbon Coated Guide Rail (DLC 코팅된 가이드레일을 이용한 볼베어링 직선 이송 스테이지의 진공환경 제어 특성 분석)

  • Shim, Jongyoup;Khim, Gyungho;Hwang, Jooho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there is an increase in the need for precision linear stages with vacuum compatibility in such areas as lithography equipment for wafer or mask manufacturing, mask mastering equipment for optical data storage and electron beam equipment. A simple design, high stiffness and low cost can be achieved by using ball bearings. However, a ball bearing have friction and wear problems just as in ambient air. In order to decrease the friction, a special finish, a diamond-like carbon (DLC) film coating, is applied to the surface of a guide rail by sputtering deposition. This paper presents the result of an experimental investigation on the control performance of a ball bearing-guided linear motion stage under two environmental conditions: in air and vacuum. A comparison between the results with and without the DLC coating was also considered in the experimental investigation.

The In-situ Dressing of CMP Pad Conditioners with Novel Coating Protection

  • Sung, James-C.;Kan, Ming-Chi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1142-1143
    • /
    • 2006
  • Kinik Company pioneered diamond pad conditioners protected by DLC barrier ($DiaShield^{(R)}$ Coating) back in 1999 (Sung & Lin, US Patent 6,368,198). Kink also evaluated Cermet Composite Coating (CCC or $C^3$, patent pending) with a composition that grades from a metallic (e.g. stainless steel) interlayer to a ceramic (e.g. $Al_2O_3$ or SiC) exterior. The metallic interlayer can form metallurgical bond with metallic matrix on the diamond pad conditioner. The ceramic exterior is both wear and corrosion resistant. The gradational design of $C^3$ coating will assure its strong adherence to the substrate because there is no weak boundary between coating and substrate.

  • PDF

Characterization of Tribological Properties of DLC Films Prepared by Different Deposition Method (증착방법에 따른 DLC 막의 마찰-마모 특성평가)

  • Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.497-504
    • /
    • 2009
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. Different deposition method such as arc plating, ion gun plating and PECVD were used for comparing mechanical and tribological properties of each DLCs deposited on stainless steel with 1 um thick respectively. Among these 3 types of DLCs, the arc plated DLC film showed highest value for wear resistance in dry condition. From the results of analysis for physical properties of DLC films, it seems that the adhesion force and crack initiation modes were more important factors than intrinsic mechanical properties such as hardness, elastic modulus and/or roughness to the wear resistance of DLC films. Raman spectroscopy was used for understanding chemical bonding natures of each type of DLC films. Typical D and G peaks were identified based on the deposition method. Hardness of the coating layers were identified by nanoindentation method and the adhesions were checked by scratch method.

Simulation of the Initial Wear and Lubrication Performance of Marine Engine Components (선박엔진 부품의 성능 향상을 위한 초기 마모 및 윤활 해석 연구)

  • Cha, Su-Bin;Lee, Hyang;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.227-234
    • /
    • 2022
  • Recently, the demand for improving energy efficiency has rapidly increased because of the growing concerns over environmental issues. In this work, the tribo-test and simulation for the initial wear and lubrication performance were performed for the piston pin in the small end system of the connecting rod of a marine engine, to obtain useful data for improving the efficiency of marine engine systems. In addition, a diamond-like carbon (DLC) coating was applied to the piston pin to explore feasibility of eliminating the bush used in the system. The initial wear and lubrication characteristics between the uncoated piston pin and bush were compared with that between the DLC-coated piston pin and connecting rod in the tribo-test. The simulation for the wear and lubrication performance according to the wear progression was conducted based on the data obtained from the test. The wear characteristics were quantitatively assessed by the wear depth and wear volume, and the lubrication performance was characterized with the change of pressure and minimum oil film thickness with respect to the crank angle. It was found that the DLC-coated piston pin may provide better initial wear characteristics and lubrication performance. The results of this work may provide fundamental information for marine engines with improved efficiency.

Effects of Intermediate Layer in DLC Thin Film on Al2O3 for Improvement of High Temperature Strength

  • Ok, Chul-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 2007
  • DLC coating on ceramics is very useful for manufacturing the materials with hardness and low friction. Adhesion of DLC thin film on ceramics, on the other hand, is usually very weak. Adhesion of DLC film depends on many parameters such as contamination and chemical bonding between thin film and substrate. In this study, adhesion of DLC film on ceramics was improved by the intermediate layer when the plasma immersion ion deposition (PIID) technique was applied. It is found that the chemical composition and the thickness of intermediate layer have significantly an effect on the adhesion of DLC thin film on $Al_2O_3$.

Investigation of Physical Properties of N-doped DLC Film and Its Application to Mo-tip FEA Devices (질소가 도핑된 DLC 막의 물성 조사 및 Mo-tip FEA 소자에의 응용)

  • Ju, Byeong-Kwon;Jung, Jae-Hoon;Kim, Hoon;Lee, Yun-Hi;Lee, Nam-Yang;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.19-22
    • /
    • 1999
  • N-doped and low-hydrogenated DLC thin films were coated on the Mo-tip FEAs in order to improve the field emission performance and their electrical properties were evaluated. The fabricated devices showed improved field emission performance in terms of turn-on voltage, emission current and current fluctuation. This result might be caused both by the shift of Fermi level toward conduction band by N-doping and by the inherent stability of DLC material. Furthermore, the transconductance of the DLC-coated Mo-tip FEA and electrical conductivity and optical band-gap of the deposited DLC films were investigated.

  • PDF