• Title/Summary/Keyword: DIN/P ratio

Search Result 40, Processing Time 0.026 seconds

Comparison of Water Quality According to Seasonal Variation in Mokpo and Wando Costal Areas

  • Kim, Woo-Hang;Lee, Young-Sik
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.269-273
    • /
    • 2008
  • The objective of this study was to evaluate the relationship between nutrients and phytoplankton. This study was done by the comparison to two costal areas Mokpo, which inflow fresh water, and Wando. In August, salinity of the sea water decreased by 3.5-4.5%o in Mokpo coastal area, but was not nearly decreased in Wando coastal area. This suggests a lot of fresh water inflow in Mokpo coastal area. DIN and DIP were decreased by water temperature increasing in Wando. However, in Mokpo, DIN and DIP were increased greatly during the summer season. Nitrogen was limited to a 10 NIP ratio especially during the summer season in Wando coastal area while phosphorus in Mokpo coastal area was limited with over 28 N/P ratio in all the seasons. Coefficient of determination$(r^2)$ between DIP and Chl.-a was 0.91 in Mokpo coastal area. On the other hand, Coefficient of determination$(r^2)$ between Chl.-a and DIN, DIP were 0.93 and 0.89, respectively, in Wando coastal area. These results suggest DIP in Mokpo and DIN and DIP in Wando might be limited at the increase of phytoplankton.

Evaluating Limiting Nutrients through Long-term Data Analyses and Bioassay Experiments in Cheonsu Bay and Taean Sea (장기자료 분석과 생물검정실험을 이용한 천수만과 태안해역의 제한영양염 평가)

  • Kim, Jin Hyun;Jeong, Won Ok;Shin, Yongsik;Jeong, Byungkwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.459-468
    • /
    • 2022
  • Long-term data analyses and bioassay experiments were conducted to assess limiting nutrients in Cheonsu Bay and Taean sea. First, long-term nutrient data (2004-2016) provided by the National Water Quality Monitoring Network were used to assess potential limiting nutrients. Analysis of the long-term data showed that the dissolved inorganic nitrogen/dissolved inorganic phosphate (DIN/DIP) ratio was mostly below 16, with N limitation being dominant. A subsequent analysis using the concentration ratios of N, P, and Si showed that N limitation was dominant during summer and autumn but that Si limitation occasionally occurred during winter and spring in relatively limited areas. However, the dominant limiting nutrient was not determined. The nutrient analysis of the field water collected during the bioassay experiment showed that DIN/DIP revealed P limitation at all stations in March and May, whereas N limitation was dominant in July and October. In the analysis using the concentration ratios of N, P, and Si, P and Si limitation appeared in March and May, but there were points with no dominant limiting nutrient. However, N limitation was dominant in July and October. In the bioassay experiment for assessment of the actual limiting nutrient, the results showed no specific limiting nutrient in March, whereas NH4+ and NO3- showed responses in May, July, and October, which confirmed that N was a substantial limiting nutrient directly involved in phytoplankton growth during this period.

Assessment for Production of Organic Matter in the Wando Costal Area. (완도해역에서 유기물의 생산량 평가)

  • Kim Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.165-170
    • /
    • 2006
  • In this study, organic matters production was calculated with long term data in Wando costal area where was selected for non influent of fresh water. The objective of this study was to evaluate relationship between nutrients and phytoplankton and, between phytoplankton and organic matter. The result of DIN was the highest with 0.138 mg/L in winter season and the lowest with 0.052 mg/L in summer season. Similarly, DIP was shown to be 0. 017 mg/L in winter and 0.011 mg/L in summer. Limiting nutrient was revealed with nitrogen in Wando costal area. Specially in summer season, nitrogen limitation was the greatest with 10.5 of N/P ratio. Chl. -a was increased 80%, 108% in spring and summer compare with winter. COD was the lowest with 0.84 mg/L in winter and the highest with 1.10 mg/L in summer. The interrelation between nutrients and Chl. -a was high. Relationship $coefficient(r^2)$ were 0.93(P<0.05), 0.89(P <0.05) between DIN and Chi. -a, DIP and Chl. -a. This results suggest dissolved nutrients might be utilized at the production of phytoplankton. Also Relationship $coefficient(r^2)$ was 0.77(P<0.05) between Chl. -a and COD. COD production rate was calculated with regression equation. The COD production rate was 17% in winter and 36% in summer. It was revealed nutrients were decreased according to temperature increasing and then Phytoplankton and organic matter were increased. The Relationship of Nutrients, Chl. -a and COD was very high.

  • PDF

The Effect of Freshwater Inflow on the Spatio-temporal Variation of water Qualify of Yeongil Bay (영일만 수질의 시ㆍ공간 변동에 미치는 담수유입의 효과)

  • 김영숙;김영섭
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In order to determine the effect of fresh water inflow from the Heongsan river on the changes of water quality in the Yeongil Bay (Korea), the seasonal changes of water temperature, salinity, chemical oxygen demand (COD), dissolved inorganic nitrogen(DIN) and phosphate phosphorus ($PO_4$-P) concentrations were examined using the data set obtained five fixed points of Yeongil Bay from 1998 to 2000. The distributions and changes of COD and concentrations of total inorganic phosphorous (TIP) and nitrogen (TIN) at three points Heongsan river, were also compared with those of Yeongil Bay. Based on the correlations of DIN and $PO_4$-P, it was found that the inflow of freshwater affected on the water quality of Yeongil Bay. Such a complicacy was confirmed by the prominent differences in n few water quality measures between Site 1(the innermost area) and Site 5 (the mouth of the bay). The negative correlations in $\Delta N/\Delta P $ at sites 1, 2 and 3 of the inner-part of the bay also indicated a large effect of freshwater inflow on the water quality of the bay. The extremely low atomic ratio of an average of 6.4 in $\Delta N/\Delta P $ compared to the Redfild ratio suggested that the DIN was depleted in the overall bay system. In contrast, it was inferred that the excessive PO$_4$-P concentration was due to the inflow of freshwater from the Heongsan river.

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.

Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea (생물검정실험을 통한 동계 진해만 식물플랑크톤의 군집 변동 특성 파악)

  • Hyun, Bong-Gil;Shin, Kyoung-Soon;Kim, Dong-Sun;Kim, Young-Ok;Joo, Hae-Mi;Baek, Seung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2011
  • The distributions of phytoplankton assemblages and environmental factors in Jinhae Bay and their relationships were investigated to estimate the potential limiting nutrient for phytoplankton growth and community structure. In situ algal bioassay experiments were also conducted to assess the species-specific characteristics in phytoplankton responses under different nutrient conditions (control, N(+) and P(+) treatment). During the study periods, bacillariophyceae and cryptophyceae occupied more than 90% of total phytoplankton assemblages. Phytoplankton standing crops in the inner part of Masan Bay were higher than that of Jinhae Bay. The DIN:DIP ratio, pH and transparency showed the significant positive correlation with phytoplankton biomass. According to cluster and multidimensiolnal scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western part of Jinhae bay where cryptophyta species were dominated. The second group was distinguished from inner stations in Masan Bay. These stations showed low transpancy and high DIN:DIP ratio. The other cluster included the stations from the eastern part and central part of Jinhae Bay, which was characterized by the high DSi:DIP ratio and dominant of diatom species. Phosphorous (P) was limited in Masan Bay due to significantly increases in the phytoplankton abundances. Based on stoichiometric limitation and algal bio-assay in Jinhae Bay, nitrogen (N) was a major limiting factor for phytoplankton production. However, silicate (Si) was not considered as limiting factor, since Si/DIN and Si/P ratio and absolute concentration of nutrient did not create any potential stoichiometric limitation in the bay. This implies that high Si availability in winter season contributes favorably to the maintenances of diatom species.

Evaluation of Water Quality Variation and Sediment of a Shallow Artificial Lake (Lake llgam) in Located the Metropolitan Area (도심의 얕은 인공호인 일감호의 수질변화특성과 퇴적환경의 평가)

  • Kim, Ho-Sub;Ko, Jae-Man;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.161-171
    • /
    • 2003
  • The present study evaluated water quality variation, limiting nutrient, and sediment of a shallow eutrophic lake (Lake Ilgam) in the metropolitan area from 2000 to 2002. According to annual mean chl.a ($77.2{\pm}36.6\;{\mu}g/l) and TP ($66.6{\pm}20.5\;{\mu}g/l) concentration and trophic state index (>60), Lake llgam was in very eutrophic status. Both inorganic nitrogen ($NH_3-N$ and $NH_3-N$) and phosphorus (SRP) concentrations in the water column increased during winter and spring, but decreased during summer followed by the phytoplankton development. Evidence for phosphorus and nitrogen as being the potential limiting nutrients for phytoplankton growth was supported by the ratio of DIN/DIP (by mass) (${\sim}$835.8), TSI derivations analysis, and algal growth potential bioassay. Based on the results of TSI derivations, strong nutrient limitation by both N and P occurred from September to November when P content in sediment (114.6 mg P/kg) was relatively low compared with the summer. Sediment contained a large amount of nitrogen (TKN: 4,452${\pm}$283.0mg N/kg dry sediment). Phosphorus content in sediment (TP: 313${\pm}$155 mg P/kg) was relatively low with temporal change. P release rate (0.29${\pm}$0.02 mg $m^{-2}$ $day^{-1}$) was high under the aerobic condition at pH 9. These results indicate that the sediment could play an important role as a source of a limiting nutrient, and temporal change of P content in the sediment is closely related with water quality, especially algal biomass change in Lake llgam.

Distribution Characteristics of Alkaline Phosphatase Activity and Phosphatase Hydrolyzable Phosphorus in Northern Gamak Bay in Autumn and Winter, 2009 (2009년 추계와 동계 가막만 북부해역에서 alkaline phosphatase 활성과 phosphatase 가수 분해성 인의 분포 특성)

  • Kwon, Hyeong-Kyu;Oh, Seok-Jin;Yang, Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.540-546
    • /
    • 2010
  • We investigated variations in alkaline phosphatase (APase) activity and alkaline phosphatase hydrolyzable phosphorus (APHP) in northern Gamak Bay from September to December 2009. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) decreased gradually, and the DIN/DIP ratio was higher than the Redfield ratio (16) based on molecular concentrations during most of the observation period. The total APase (T-APase) activity increased with decreasing DIP concentration; i.e., the Relationship between T-APase and DIP showed a high negative correlation (r=-0.80, P<0.001), with APase activity being a good indicator of DIP limiting the Redfield ratio. The T-APase was positively correlated with the concentration of chlorophyll a (r=0.73, P<0.001). This suggests that a major portion of APase activity in northen Gamak Bay seawater is attributed to phytoplankton. The proportion of APHP among dissolved organic phosphorus (DOP) was low in September and high in November. Thus, APase-producing phytoplankton may be able to grow by utilizing APHP as a phosphorus source in autumn when DIP is limiting. Thus, APase activity and the use of DOP by phytoplankton may play an important role in the growth of phytoplankton under DIP limiting conditions such as those of northern Gamak Bay.

Limiting Nutrients for Phytoplankton Growth in the Seomjin River Estuary as Determined by Algal Bioassay Experiment (생물검정실험에 의한 섬진강 하구역 식물플랑크톤 성장의 제한영양염 평가)

  • Kwon Kee Young;Kim Chang Hoon;Kang Chang Keun;Moon Chang Ho;Park Mi Ok;Yang Sung Ryull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.455-461
    • /
    • 2002
  • limiting nutrients for phytoplankton were determined by dissored inorganic nitrogen/phosphorous (DIN/DIP) in situ and algal bioassay experiment in the Seomjin River estuary during a study period from March 1999 to October 2001. DIN/DIP ranged from 14.7 to 681.1 during the study period. DIN/DIP was over 16 at the upper and middle estuarine region where salinity was lower than 25 psu and chlorophyll a concentration was high, probably indicating P-limitation in this region while the ratio was less than 16 at the high saline (> 25 psu) region, reflecting the supply of DIP from Gwangyang Bay and thereby indicating N-limitation at the lower estuarine region. These results suggested that the spatial distribution of DIN/DIP in the study region was controlled by the high supply of phosphate from Gwangyang Bay, the low input from Seomjin River and the active uptake by phytoplankton within the estuarine system. The bioassay experiments using Skeletonema costatum, Thalaasiosira rotula and in situ phytoplankton assemblage displayed relatively higher growth of phytoplankton in the P-added culture media, indicating P-limitation. This result was well consistent with the spatial distribution of inorganic nutrients. S. costatum showed a rapid adaptation to the low salinity compared to other phytoplankton species. This phenomenon seemed to account for the strong (> $90\%$ in total cell number) S. costatum bloom in autumn in this estuary. Moreover, although phytoplankton growth rate was higher in the P-added culture media at the end of culture experiment of in situ phytoplankton, the fast growth in the trace metal-added media at the beginning of the experiment suggested a possibility of limitation by other micro-nutrients such as trace metal and vitamin etc.

The Characteristic of Point Source Loads for Nitrogen and Phosphorus to Gwangyang Bay, Korea (광양만으로 유입되는 질소, 인의 점원 오염부하 특성)

  • Kim Do-Hee;Cho Hyeon-Seo;Lee Young Sik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • We estimated the loadings of nitrogen and phosphorus flowing into Gwangyang Bay front river for monthly interval from April to December of 2003. We analyzed the concentrations of nitrogen and phosphorus in water and estimated the flowing rates of fresh water in 34 rivers. The amounts of water flowing into the Gwdngyang Bay from Sum-Jin River was 51-76% in the total inflow of the river. The river water over 96% of discharge was from Sumjin River, Dong River, Ju-Kyo River, Seo River and Shinkyum River. The flowing patterns of nitrogen and phosphorus into Gwangyang Bay were similar to the flowing of river. The nitrogen and phosphorus loadings into the Bay were higher in July and August than in dry seasons. In particular, the concentrations of phosphorus were high in Namshu River, Deukyang River and Kilho River sewage during in dry seasons. The range of DIN and TN loadings from Sumjim River were 46-66% and 36-64%, respectively. The loading of DIP and TP from Sumjim River were 2-55% and 12-67%, respectively. These results show that the most efficient control of N. p flow into Gwangyang Bay is to restrain the inflows of N, p from Namshu River, Deukyang River and Kilho River and to restrain the flows of N, p from Dong River, Ju-Kyo River and industrial plant. The DIN/DIP atom ratio in river water was about 18 in July and August, while the ratio was more higher in dry seasons than July and August of rainy seasons. The TN/TP atom ratio in river water was about 7 in rainy seasons, while the ratios were higher than 100 in the other months of dry seasons.

  • PDF