• 제목/요약/키워드: DI engine

검색결과 211건 처리시간 0.023초

디젤엔진에 있어서 연료의 성분이 아산화질소 배출에 미치는 영향 (Effect of fuel component on nitrous oxide emission characteristics in diesel engine)

  • 유동훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1045-1050
    • /
    • 2014
  • 아산화질소($N_2O$, Nitrous Oxide)는 이산화탄소($CO_2$, Carbon Oxide), 메탄($CH_4$, Metane)이어 세 번째로 지구온난화에 기여하는 물질로 알려져 있다. $N_2O$의 지구온난화 계수는 대기 중에서 안정하고, 성층권에서 광분해 된 후 이차적인 오염의 원인이 되기 때문에 $CO_2$의 310배에 이른다. $N_2O$의 생성에 대한 조사는 보일러와 같은 연속적인 연소를 갖는 동력원에 대하여 몇몇의 연구자들에 의한 보고가 있었다. 하지만, 디젤엔진에 있어서 연료의 성분이 $N_2O$ 배출에 미치는 영향에 대한 조사는 실시되어지지 않은 상태이다. 그러므로 본 연구에서는 디젤엔진에서 연료 중에 질소와 황 농도에 의해 변화되는 $N_2O$ 배출율에 대하여 조사하였다. 실험에 사용한 엔진은 12kW/2400rpm의 4행정 직접분사식 디젤엔진이고, 실험엔진의 운전조건은 75% 부하에서 이루어졌다. 연료 중의 질소와 황 농도는 Pyridine, Indole, Quinoline, Pyrrol, Propionitrile, Di-tert-butyl-disulfide의 6 종류 첨가제를 사용하여 증가시켰다. 결과에 의하면, 질소성분 0.3% 이하를 갖는 디젤연료는 첨가제의 종류와 농도와 관계없이 $N_2O$ 배출률에 영향을 미치지 않았다. 하지만, 연료 중 황 첨가제의 증가는 배기가스 중의 $N_2O$ 농도를 증가시켰다.

장-행정 저속 4 사이클 디젤기관의 제작 및 최적 연소조건에 관한 연구 (A Study on Optimal Combustion Conditions with a Design and Manufacture of the Long-Stroke Slow Speed 4 Cycle Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.551-558
    • /
    • 2004
  • Recently, fuel prices have been continually raised in diesel engine. Such a change in the fuel price influences enormously the development trend of marine diesel engines for slow speed, In other words, the focus was shifted from large diameter and high speed to low fuel consumption. Accordingly, more efforts are being made for engine manufacturing and development to develop highly efficient engines. In this study. a single cylinder 4 stroke cycle DI slow speed diesel engine was designed and manufactured, a 4 stroke cycle was configured and basic performances were evaluated. The results are as follows. The optimal fuel injection timing had the lowest value when specific fuel consumption was in BTDC 8~$10^{\circ}$, a little more delayed compared to high speed diesel engines. Cycle variation of engines showed about 5% difference at full loads. This is a significantly small value compared to the cycle variation in which stable operation is possible, showing the high stability of engine operation is good. The torque and brake thermal efficiency of engine increased with an increase of engine 250-450 rpm. but fuel consumption ratio increased from the 450 rpm zone and thermal efficiency abruptly decreased. Mechanical efficiency was maximally 70% at a 400 rpm that was lower than normal engines according to the increase of mechanical frictional loss for cross head part. The purpose of this study was to get more practical engines by comparing the above results with those of slow speed 2 stroke cycle diesel engines.

RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구 (Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine)

  • 박종상;하동흔;염정국;하종률;정성식
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구 (Experimental Study on DeNOx Characteristics of Urea-SCR System)

  • 함윤영;이성호;정홍석;신동현
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

디젤기관의 대체연료 이용에 관한 연구(III) (에스테르 연료, 연소특성해석) (A Study on Alternative Fuel as Fuel Substitutes in DI Diesel Engine III (Esterified fuel, Analysis of rate of combustion using by Wiebe's functions))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제11권1호
    • /
    • pp.31-43
    • /
    • 1989
  • 제2보 (2)에서는 식물유를 연료로 사용할 경우 문제점인 시동성, 내구성 및 카본생성을 억제하기 위하여 물리적인 방법으로 해결책을 모색하였다. 그러나, 본 연구는 기관자체는 전혀 변형시키지 않고, 점도저감을 위하여 화학적인 방법 즉, 식물유를 알콜과 반응시켜 에스테르변 환을 하여 해결하려는 방법으로, 에스테르화한 연료를 사용하였을 때의 기관성능 및 카본 퇴적 문제를 비교, 시험한 것이다. 또, 기름이 식물유와 같이 지방산으로 이루어져 있다면, 어느 기름도 에스테르 변환이 가능하기 때문에, 생선기름인 정어리기름의 에스테르연료도 사용하여 그 이용 가능성을 확실히 하였다. 또한, 각종 연료의 연소성에 관하여 보다 상세한 검토를 하기 위하여, 이들의 연소율 파형을 2개의 Wiebe의 연소함수의 조합으로 표현함과 동시에 연소율 파형을 구성하는 각 변수를 해석함으로써, 기관성능치와 연소성과의 정량적인 관계에 대해서도 조사한 것이다.

  • PDF

직접분사 조건에서 충돌벽면이 미치는 영향에 대한 LPG와 CNG의 분무 및 연소 특성 연구 (A Study on Characteristics of Spray and Combustion of LPG and CNG about the Effect of Impingement-wall under Direct Injection Condition)

  • 정성식;황성일;염정국;김성희
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.56-68
    • /
    • 2015
  • Liquefied petroleum gas and compressed natural gas haven been regarded as promising alternative fuels because of no smoke, and they are also clean fuel for spark-ignited engine. In spark-ignited direct-injection engine, direct injection technology can increase engine volumetric efficiency significantly and also reduce necessity of throttle valve. This study designed combustion chamber equipped with visualization system. To improve ignition probability, the study designed to help three types of impingement-walls to form mixture. In doing so, LPG CNG-air mixture could be easily formed after spray-wall impingement and ignition probability increased too. The results of this study could contribute as basic resources of spark-ignited direct injection LPG and CNG engine design and optimization extensively.

SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine)

  • 이창희;이기형;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

디젤기관의 대체연료 이용에 관한 연구(II) (시동성 및 내구성 문제) (A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(II) (Startability and Durability))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제10권6호
    • /
    • pp.48-53
    • /
    • 1988
  • In a previous report, the properties of vegetable oils as diesel fuel substitutes were investigated and the basic load performance of a diesel engine was examined using vegetable oil. The results show that despite of the long term chain hydrocarbon structure and large droplet size due to high viscosity, vegetable oils have good basic performance and exhaust emissions, however they cause serious problems as carbon deposit buildup, they have poor durability, and also poor thermal efficiency. In this paper, the startability and engine durability with long term operation was tested by physical methods for reducing viscosity when vegetable oil was used as compared against diesel fuel. The results obtained in this investigation may be stated as follows; (1) There is no problem in startability when vegetable oil was used as diesel fuel substitutes as far as fuel temperature is higher than 30.deg. C (2) The carbon deposits were most extensive at lower loads and lower engine speeds, and deposit buildup more heavily on the cooler parts of the combustion chamber wall. (3) Blends with 25% diesel fuel and 20v-% ethanol are effective in reducing the carbon deposit buildups. (4) Significant improvement in carbon deposit and piston ring stick can be obtained by heating fuel(200.deg.).

  • PDF

승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine)

  • 노현구;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

MAP 기반 DME용 엔진 제어로직 개발 (Development of Map-Based Engine Control Logic for DME Fuel)

  • 박용국;정재우
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3127-3134
    • /
    • 2013
  • 본 연구는 DME 연료를 사용할 수 있도록 변경된 엔진의 제어 알고리즘, 로직구성 및 차량상태에서 검증결과를 나타낸 것으로써, 제어구조 및 자동코드 생성기법에 의한 제어로직 설계과정과 제어 맵을 소개하고 최종적으로 제어의 신뢰성 및 성능을 검증한 것이다. 제어구조는 운전자 요구를 엔진발생토크로 구현하기위한 분사제어부와 배기가스 및 동력특성을 만족시키기 위한 공기제어 시스템부로 크게 구성되며, 제어로직은 제어응답성을 향상시키기 위하여 각 제어 기능별로 앞먹임 및 뒤먹임 제어부로 설계되었고, 앞먹임 제어부의 제어 맵은 엔진모델을 이용하여 생성한 뒤, 이를 엔진 및 차량 시험과정에서 보정하였다. 개발된 제어기를 장착하여 차량 시험모드를 완주하였으며, EGR, VGT 및 분사시기 보정에 의하여 배출가스 저감효과를 확인하였다.