In this paper, the development of a stock information retrieval system using speech recognition and its features are described. The system is based on DHMM (discrete hidden Markov model) and PLUs (phonelike units) are used as the basic unit for recognition. End-point detection and echo cancellation are included to facilitate speech input. Continuous speech recognizer is implemented to allow multi-word speech. Data collected over several months are analyzed.
Kim, Jae-Beom;Park, Chan-Kyu;Han, Mi-Sung;Lee, Jung-Hyun
The Transactions of the Korea Information Processing Society
/
v.4
no.6
/
pp.1531-1540
/
1997
In this paper, we presents automatic Korean continuous speech recognizer which is improved by the speech rate estimation and the compensation methods. Automatic continuous speech recognition is significantly more difficult than isolated word recognition because of coarticulatory effects and variations in speech rate. In order to recognize continuous speech, modeling methods of coarticulatory effects and variations in speech rate are needed. In this paper, the speech rate is measured by change of format, and the compensation is peformed by extracting relatively many feature vectors in fast speech. Coarticulatory effects are modeled by defining 514 Korean diphone set, and ETRI's 445 word DB is used for training speech material. With combining above methods, we implement automatic Korean continuous speech recognizer, which shows improved recognition rate, based on DHMM(Discrete Hidden Markov Model).
This paper proposes an observation probability smoothing technique for the robustness of a discrete hidden Markov(DHMM) model based speech recognizer. Also, an appropriate noise robust processing in car environment is suggested from experimental results. The noisy speech is often mislabeled during the vector quantization process. To reduce the effects of such mislabelings, the proposed technique increases the observation probability of similar codewords. For the noise robust processing in car environment, the liftering on the distance measure of feature vectors, the high pass filtering, and the spectral subtraction methods are examined. Recognition experiments on the 14-isolated words consists of the Korean digits and command words were performed. The database was recorded in a stopping car and a running car environments. The recognition rates of the baseline recognizer were 97.4% in a stopping situation and 59.1% in a running situation. Using the proposed observation probability smoothing technique, the liftering, the high pass filtering, and the spectral subtraction the recognition rates were enhanced to 98.3% in a stopping situation and to 88.6% in a running situation.
There have been many studies on speaker normalization which aims to minimize the effects of speaker's vocal tract length on the recognition performance of the speaker independent speech recognition system. In this paper, we propose a simple vector quantizer based linear warping speaker normalization method based on the observation that the vector quantizer can be successfully used for speaker verification. For this purpose, we firstly generate an optimal codebook which will be used as the basis of the speaker normalization, and then the warping factor of the unknown speaker will be extracted by comparing the feature vectors and the codebook. Finally, the extracted warping factor is used to linearly warp the Mel scale filter bank adopted in the course of MFCC calculation. To test the performance of the proposed method, a series of recognition experiments are conducted on discrete HMM with thirteen mono-syllabic Korean number utterances. The results showed that about 29% of word error rate can be reduced, and that the proposed warping factor extraction method is useful due to its simplicity compared to other line search warping methods.
KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.56-60
/
1999
본 논문은, 자동차에서 발생할 수 있는 다양한 형태의 잡음이 섞인 음성을 대상으로, 잡음에 강인한 파라미터들을 사용하여 인식기들을 구축하였으며, 이들 파라미터를 비교 평가하였다. 실험에 사용된 음성 데이터는 차종, 속도, 도로 환경, 라디오 ON/OFF, 창문 개폐여부 등 다양한 잡음 환경에서 수집하였다. 실험에서 비교된 파라미터는 MFCC(Mel-Blrequency Cepstral Coefficient)와 PLP(Perceptually Linear Prediction) 이며, 각각의 파라미터에 대해서 MKM(Modified k-mean)을 이용하여 코드북을 작성하였고, DHMM(Discrete Hidden Markov Model)을 인식알고리즘으로 사용하였다. 실험 결과로서, 아스팔트 도로에서 창문을 닫고, 라디오를 켜지 않은 상태에서 60km/h로 주행시 $96.25\%$로 가장 높은 인식률을 얻었고, 고속도로에서 창문을 열고 100km/h로 주행시에는$60\%$로 가장 낮은 인식률을 얻었다.
최근 음성인식을 위한 대표적인 방법으로써 은닉 마르코프 모델이 사용되고 있으며, 이러한 방법은 음성의 특성을 잘 표현하도록 하는 음향적인 모델링 방법에 따라서 성능이 좌우된다. 본 논문에서는 상태에서의 출력확률은 견고히 추정하기 위한 방법으로 상태에서 의 출력활률을 소스들의 분포와 그들의 빈도로 가중한 출력분포로 표시하는 상태 의존 소스 양자화 모델링 방법을 제안한다. 이 방법은 한 상태 내에서 특징 파라미터들이 유사한 특성 을 가지며, 그들의 변이가 다른 상태에 있는 특징 파라미터들에 비해서 작다는 사실에 기반 한다. 실험결과에 의하면, 제안된 방법이 기존의 baseline시스템보다 단어 인식율의 경우는 2.7%, 문장 인식율의 경우 3.6%의 향상을 보였다. 이러한 결과로부터 제안된 SDSQ-DHMM이 인식율 향상면에서 유효하며, HMM에 있어서 상태별 출력확률의 견고한 추정을 위한 대안으로 사용될 수 있을 것으로 판단된다.
본 논문에서는 음소별 코드북 개수의 선택과 벡터 양자화에 따른 음소 인식률과 고립단어 인식률에 대하여 다룬다. 음성모델은 이산 확률 밀도를 갖는 DHMM(Discrete Hidden Markov Model)을 사용하였으며, 코드북 생성과 벡터 양자화 알고리즘으로는 K-means 알고리즘과 LBG(Linde, Buzo, Gray) 알고리즘을 사용하였다 음소별 코드북 개수와 벡터 양자화를 최적화함으로써 음소 인식률을 향상시킬 수 있으며, 그 결과 안정된 고립단어 인식률을 얻을 수 있다.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.171-174
/
2000
본 논문에서는 홈 오토메이션 시스템을 음성인식을 도입하여 설계하였다. 많은 계산량과 방대한 양의 데이터의 처리를 요구하는 음성인식을 DSP(Digital Signal Processor)를 통하여 구현해 보고자 본 연구를 수행하였다. 이를 위해 실시간 끝점검출기를 이용하여 추가의 입력장치가 필요하지 않도록 시스템을 구성하였다. 특징벡터로는 LPC로부터 유도한 10차의 cepstrum과 log 스케일 에너지를 이용하였고, 음소수에 따라 상태의 수를 다르게 구성한 DHMM(Discrete Hidden Marcov Model)을 인식기로 사용하였다. 인식단어는 가정 자동화를 위하여 많이 쓰일 수 있는 10개의 단어를 선택하여 화자 독립으로 인식을 수행하였다. 또한 단어가 인식이 되면 인식된 단어에 대해서 현재의 상태를 음성으로 알려주고 이에 대해 자동으로 실행하도록 시스템을 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.